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1 Introduction

Very often, environmental regulators do not have perfect information (either
ex-ante or ez-post) about polluting firms that are required to comply with rec-
ommended pollution limits or standards. Fz-ante concerns standard setting.
Regulators are less informed than firms about their technological characteris-
tics, sometimes needing mechanisms which elicit private information.! Ez-post
refers to the behavior of firms in response to the standards already in place.
Regulators may not observe the performance of firms unless they engage in
costly monitoring. Therefore, they design enforcement policies composed of in-
spection frequencies and sanctions in case firms are discovered exceeding the
standards.? Depending on the monitoring costs, the standards to be enforced
and the information authorities own about the regulated firms, enforcement may
be imperfect, that is, some firms may find it profitable to violate environmental
standards.

Despite the relatively high frequency of this observation?, surprisingly the
theoretical literature on environmental regulation has not explored whether it
is desirable from a normative point of view to set environmental policies which
induce firms to deliberately violate the standards. In this paper, we explore
this issue, that is, whether we can rationalize the setting of standards under

imperfect enforcement situations. Our main finding is precisely to show that

IFor example, under the US National Pollutant Discharge Elimination System (NPDES)
Program, the Environmental Protection Agency (EPA) issues individual permits to facilities
which discharge pollutants into waters of the US, based on reported information about their
pollution control processes.

2The Civil Penalty Policy of the Clean Water Act establishes the factors that the EPA
should consider when imposing sanctions for noncompliance. Among others, the degree of
noncompliance is a key gravity factor.

3 Consult www.epa.org for details on the EPA’s enforcement actions against noncompliant
facilities and the merits of the EPA’s Audit Policy to increase compliance rates.



the ez-ante informational constraint plays a key role in the results.*

We consider a firm that owns private information about its benefits from
pollution. The firm can be of two possible types, namely clean and dirty, based
on its induced pollution level in response to a given policy. In principle, the
regulator may decide to set a uniform policy (regardless of type) or an incen-
tive compatible policy (contingent on type) where each type prefers the policy
initially designed for it.?

The message of the paper is clear. Under ex-ante imperfect information,
we can find situations where it is optimal to set positive standards that induce
noncompliance. The result is independent of the optimal policy being uniform
or type-contingent.

In the case of a uniform policy, we find that full compliance is never optimal.
It is always worth to infinitesimally decrease the probability of inspection, since
the savings in monitoring costs are larger than the decrease in welfare associ-
ated with both types’ larger pollution levels. Under complete information, a
positive standard is never optimal. However, a zero standard under incomplete
information may result in over-enforcement of the clean type, with the corre-

sponding negative effect on social welfare. This result is relevant and provides

4 Arguedas and Hamoudi (2004) and Arguedas (2005a) have recently studied the charac-
teristics of optimal policies composed of pollution standards, probabilities of inspection and
fines, under perfect information ez-ante and imperfect enforcement. There, it is shown that
optimal policies can induce noncompliance to zero standards only. The result is quite intu-
itive. Since fines depend on the degree of noncompliance, if a positive standard that induced
noncompliance were set, the regulator would find it profitable to decrease the standard and the
probability of inspection at the same time keeping the firm’s pollution incentives unchanged
and reducing monitoring costs. This is the spirit of Becker (1968)’s well known result of im-
posing maximal fines to keep enforcement costs at the minimum. Given a pollution level and
a structure of fines dependant on the degree of noncompliance, a lower standard increases the
fine for noncompliance and, therefore, it is possible to decrease the probability of inspection,
then saving monitoring costs.

>Qur approach differs from that in which, given the standard, the firm reports its emission
level with the possibility of under-reporting, such as in Sandmo (2002). In our case, we have
an added ez-ante informational asymmetry and, since we analyze optimality of the standards,
we can restrict ourselves to incentive compatible policies. Also, once emissions have been
released, we assume that they can be measured through costly monitoring.



an additional explanation to the literature in favor of non-maximal fines.®

In fact, we find violations to strictly positive standards under low monitoring
costs, intermediate values of the clean type’s profitability and large regulator’s
uncertainty. The explanation is clear, since there exists a trade-off between
enforcement costs and the clean type’s over-enforcement problem mentioned
above. Given clean type’s profitability, the larger the monitoring costs, the
larger the enforcement costs, which favors a zero standard setting. Also, given
a level of the monitoring costs, the smaller clean type’s profitability, the larger
the over-enforcement problem, which favors a positive standard setting. Finally,
when uncertainty decreases (in favor of any type) , the solution approximates
to the complete information outcome, which implies a zero standard.

By contrast, if the policy is type-contingent, incentive compatibility requires
both smaller standard and inspection probability for the dirty type.” Also, the
dirty type always finds it profitable to violate the standard, which again can
be positive under low monitoring costs. However, as opposed to the uniform
case, this result is more likely to be found when both clean type’s profitability
and likelihood are large, since in these two cases, the solution approximates
to the clean type’s compliance solution. Here, there exists a trade-off between
enforcement costs and dirty type’s under-enforcement. The larger the clean
type’s profitability and likelihood, the larger the dirty type’s under-enforcement
problem if its standard is zero.

The literature on standards and enforcement issues started with Downing

6 After Becker (1968), several papers in the crime context have explained the reasons why
fines are not maximal, such as risk aversion (Polinsky and Shavell (1979)), imperfect informa-
tion about the regulatory policy (Bebchuk and Kaplow (1991), Kaplow (1990)), differences in
wealth (Polinsky and Shavell (1991)) or marginal deterrence (Andreoni (1991), Shavell (1992),
Heyes (1996)), among others. In all these papers, however, standards are exogenous.

"In the tax evasion literature, the optimal inspection probability is also a decreasing func-
tion of reported income. For example, see Reinganum and Wilde (1985).



and Watson (1974) and it is vast nowadays (Heyes (2000) provides a compre-
hensive survey in the environmental context). However, our approach has not
been considered yet, namely combining standard-setting, endogenous imper-
fect enforcement and asymmetric information. This allows us to rationalize
positive standard violations, a result that is not possible under alternative as-
sumptions within the principal-agent framework. For example, Ellis (1992a)
studies standard-setting under ez-ante incomplete information, but restricting
attention to policies which induce compliance. There are papers which study
incentive compatible optimal pollution taxes, such as Jebjerg and Lando (1997),
which implicitly constrain to zero standards. Swierzsbinky (1994) consider op-
timal taxation also, relaxing the assumption of incentive compatibility, but they
again restrict to zero standards. The only exception is Arguedas (2005b), which
considers a bargaining context under complete information and assumes that the
firm can choose the environmental technology as well. There, it may be ben-
eficial for both the regulator and the firm to achieve a cooperative agreement
where the firm chooses a cleaner technology in exchange for a relaxed regulation
consisting of a positive standard and a reduced fine for noncompliance.

The remainder of the paper is organized as follows. In the next section,
we present the model. In Section 3, we study the optimal behavior of the
firm. In Section 4, we analyze optimal uniform policies and the likelihood of
obtaining positive standards. In Section 5, we discuss the case of the optimal
type-contingent policy. We conclude in Section 6. All the proofs are in the

Appendix.



2 The Model

We consider a single firm that generates pollution as a by-product of its produc-
tion activity. The firm obtains private benefits from pollution, which depend
on the pollution level e > 0 and a parameter 6; > 0, ¢ = 1,2, 67 < 03, which
refers to the firm’s pollution profitability. Let B (e,6;) = 6;b(e) represent the
firm’s profits, where b (e) is continuous and concave in the pollution level with
an interior maximum at ¢ > 0, and such that b (0) = 0 and b (e) > 0.5 Given
a pollution level, the clean type (61) obtains lower total and marginal benefits
than the dirty type (f2). The firm knows its type but the regulator only knows
the probability distribution of the types. Let 7, denote the probability that the
firm is of type 6;, such that v; € [0,1] and v; + v, = 1.

Pollution generates external damages measured by d (e), which is continuous,
strictly increasing and convex in the pollution level, and such that d (0) = 0.

In the absence of regulation, the firm does not internalize external damages
and pollution is € = arg max.>¢ 0;b (e), for all 7.

We assume there exists a regulator who sets a standard s € [0,¢], that
is, a maximum level of permitted pollution.” The regulator knows the firm’s
pollution level in response to the standard only under costly (but perfectly
accurate) monitoring. The cost per inspection is ¢ > 0. Therefore, the regulator
does not generally inspect the firm in every instance but only with probability

€ [0,1]. Once inspected, if the firm is discovered exceeding the standard, then

it is forced to pay a penalty which depends on the degree of noncompliance,

8 This specification of profits simplifies the algebra without affecting the qualitative nature
of the results.

90bviously, the regulator is not interested in a standard larger than the pollution level
chosen by the firm in the absence of regulation.



e — s. We assume that the sanction is represented by the function F (e —s),
which is strictly increasing and convex in e — s > 0, and such that F' (e —s) =0
for all e — s < 0. For simplicity, we consider F"" = 0.1 We assume that the
sanction is fixed by a government entity other than the regulator, for example,
the judiciary.'!

We take a principal-agent approach where the regulator (principal) chooses
the standard and the probability of inspection that maximizes social welfare,
considering the optimal response of the firm (agent) to the policy.

Given {s, p}, a firm of type 6; chooses the pollution level that maximizes its

expected payoff, that is, private benefits minus expected penalties, as follows:

P (s.p.03) = max {85 (¢) — pF (e — ) (1)

Let e (s,p, ;) be the pollution level chosen by type 6; given the policy {s,p},
ie., e(s,p,0;) = argmaxe>0{0;b(e) —pF (e —s)} <e.

Considering the firm’s best response, the regulator now chooses the policy
that maximizes social welfare. Since the regulator does not know the true type
of the firm, the policy cannot be based upon it. There are two kind of policies

the regulator may choose. The first is a uniform policy {s, p}, that is, the same

10Given these assumptions, we have (F’)2 — FF” > 0 for all e — s > 0, a property that
plays a key role in the results, as we will see later on.

1 This assumption is common in the literature in this context except, for example, in Heyes
(1996) or Arguedas (2005b). In other contexts, such as crime, there are several papers which
determine optimal fines and inspection probabilities, such as Becker (1968), Polinsky and
Shavell (1979, 1990) or Bebchuck and Kaplow (1991), but there the standard is exogenous. In
the context of tax evasion, few papers consider endogenous fines. See, for instance, Mookherjee
and Png (1989).



policy regardless of the type. In this case, social welfare is as follows:
2
SwW (Sap) = 271 [P (S7p7 9L) - d(e (S7p7 91)) +pF (6 (87p7 9L) - S)] —Cp (2)
i=1

The regulator is concerned about the firm’s expected payoff, the generated
damages, the expected collected fines and the expected monitoring costs. We
assume that there are no social costs associated with collecting fines, and that
fines are redistributed lump-sum. Also, we do not impose any budget require-

ment on the monitoring activity. Considering (1), (2) reduces to:
2
SW (Svp) - Z’Yz [ezb (6 (57p7 91)) —d (6 (svpv HL))] —cp (3)
i=1

The second type of policy is type-contingent. Here, the regulator has to
design a mechanism to elicit the firm’s private information. By the revelation
principle, we can concentrate on direct mechanisms where the regulator asks
the firm to report its type, é\i, and then, it sets the policy based on the report,
{s (é;) D <é:> }, such that it induces the firm to reveal its true type, é\z =0;.

This is the well known incentive compatibility condition, represented as follows:

0; € arg max P (s (é;) D (:) ,91-) 4)

For convenience, we assume that if the firm is indifferent between announcing
any of the two types, then it announces the true type.

~

Denoting s; = s (91-) and p; =p (é;), 1 = 1,2, social welfare is now:

SW (s1,82,p1,p2) = Z% [0: (e (si, i, 0:)) — d (e (s, piy 0)) —epi] - (5)



where (s1, 82, p1, p2) satisfy (4). Note that a uniform policy is trivially incentive
compatible.'?

Throughout the paper, we assume that the regulator commits to the an-
nounced inspection probability. This can be justified considering that the reg-
ulator has to build up a reputation, that is, policy announcements must be
credible to induce the desired behavior.'?

In the next section, we study the firm’s induced behavior with respect to the

announced policy.

3 The Optimal Behavior of the Firm

Consider a feasible policy {s,p}. As explained in the previous section, the
corresponding type 6;’s expected payoff is given by (1).

If type 0; complies with the standard (e < s), it does not incur any penalty.
Since b (e) is strictly increasing in e < €, the optimal compliance decision is s
and its payoff is 6;b (s).

If type 0; exceeds the standard (e > s), then there is a chance of inspec-
tion. Consequently, the optimal noncompliance decision is n; = n(s,p,0;) =
arg maxess {0;b (¢) — pF (e — s)} > s and the corresponding payoff is 7 (s, p, 8;).

Since the maximand is strictly concave in e, the first order condition character-

12Besides incentive compatibility, the literature on economics of information considers par-
ticipation constraints also, that is, feasible policies must be such that firms’ payoffs are non-
negative. In our case, this additional requirement is trivially satisfied since b (0) = 0.

13 A formal justification of this assumption would require to consider a dynamic model,
which is beyond the scope of this paper. In static models such as ours, the assumption of
commitment is common in the literature. Some exceptions in the environmental context are
in Ellis (1992b), Grieson and Singh (1990) or Franckx (2002).



izes the interior noncompliance decision:
0;b' (e) = pF' (e — s) (6)

Implicitly differentiating (6), we obtain n;, = n, (s,p,6;) = M/,L_IPF,/ and
nis = ns (8,p,0;) = —m%. Observe that n;, < 0 and 0 < n;; < 1. That is,
type 6;’s pollution level increases when the probability of inspection decreases
and the standard increases. However, since n;s < 1, the degree of violation
decreases when the standard increases.!?

Given {s,p}, type 6; chooses whether to comply or not depending on the
expected payoff of each possibility. Thus, its optimal response is:

s if 0;0(s) > 7 (s,p,0;)

e(S,p, 91) = (7)
’Il(S,p, 9L) if eLb (S) < W(S,p, 91)

and its expected payoff can be further expressed as:
P(S,p, 91) = max {alb (S)vﬂ_(svp;ei)} (8)

In the following lemma, we show the properties of the function P (s,p,0;):

Lemma 1 The function P (s,p,0;) is non-decreasing and concave in s, non-
increasing and conver in p, it has a monnegative cross partial, and it is such

that P (s,p,02) > P (s,p,01). Moreover, P (s,0,0;) = 0;b(e) for all i.

We now characterize the set of policies for which each type is indifferent

between complying and noncomplying with the standard. Since sanctions are

M Note that n;s = 0 when either F”/ =0 or p = 0.

10



continuous at e = s, the maximand in (1) is continuous for all s. Therefore,
considering (6), type 6; complies with the standard only if ;b (s) < pF’ (0).

Thus, the minimum probability that induces type 6; to comply with s is:

P°(5.0:) = = <1 9)

which is decreasing and convex in s, and such that p© (s, 62) > p° (s, 01).!% Since
p < 1, there may exist a subset of nonenforceable standards for each 6;.16

In Figure 1, we represent the functions p° (s, 6;) in the space of feasible poli-
cies. In the horizontal axis we measure the standard and in the vertical axis, we
measure the probability of inspection. These functions divide the set of feasi-
ble policies into three regions, namely compliance (C), partial compliance (PC)
and noncompliance (NC). Therefore, all the policies on or above the function
p° (s, 03) induce both types to comply with the standard. The set of policies be-
tween p€ (s,671) and p° (s, 02) induce the clean type to comply only. Finally, the
policies below the function p° (s, 1) induce both types to violate the standard.
Thus, 05’s noncompliance region is larger than that of 6.

In the figure, we also include each type’s indifference map, where each in-
difference curve is composed of the set of policies such that type 6; 's expected
payoff is constant. By Lemma 1, type 6;’s payoff increases to the southeast,
i.e., whenever the standard is larger and the probability of inspection is smaller.
And it obtains the maximum expected payoff at s =€, p € [0,1] and s > 0,

p = 0. The shape of the indifference curves is now presented in the following:

Lemma 2 If a policy {s,p} induces type 0; to comply with the standard, the

15The assumptions on the penalty function ensure that F’ (0) is finite and strictly positive.
16T there exists §; > 0 such that p°® (;,6;) = 1, then s € [0, 5;) cannot be enforced for 6;.

11



indifference curve at that policy is vertical. If it induces moncompliance, the
indifference curve at that policy is strictly increasing and convezx. At any {s,p},

the slope of 01 s indifference curve is not smaller than that of 0.

In both the full noncompliance and the partial compliance regions, indiffer-
ence curves satisfy the single crossing property. However, in the full compliance
region, indifference curves do not cross.

The revelation principle allows us to restrict attention to incentive compat-
ible policies. For example, a policy {s1,p;} for 0, and a policy {s2,p2} in the
shaded area of Figure 1 for GAQ is incentive compatible, i.e., no type has an
incentive to misrepresent its type. Note that so < s; and ps < p;.

Having studied the firm’s optimal response, we now analyze the features of

the optimal policy. First, we consider the case of the uniform policy.

4 The Optimal Uniform Policy

In this section, we analyze the case in which the regulator sets the same policy
regardless of the type. Here, the regulator maximizes social welfare given by
(2), considering the firm’s optimal behavior analyzed in the previous section. In
the following proposition, we provide a useful preliminary result to characterize

the optimal policy in this case.
Proposition 3 Let (s*,p*) be the optimal uniform policy. Then, p* < p°(s*,601).

A uniform policy which induces full compliance is never optimal, since, by
(9), p© (s*,61) < p°(s*,02). A policy as such would imply clean type’s under-

enforcement and dirty type’s over-enforcement with respect to the complete

12



information case (see Figure 2). Intuitively, full compliance is socially too expen-
sive, and welfare increases if the regulator decreases the inspection probability,
since clean type’s incentives remain unchanged, and the savings in monitoring
costs are larger than the decrease in efficiency due to the larger dirty type’s
induced pollution level.

Thus, if the optimal policy is uniform, at least it induces the dirty type
to violate the standard. The clean type cannot strictly prefer to comply with
the standard at the optimal policy. If a policy as such were set, welfare could
be increased decreasing the probability of inspection, since incentives for the
clean type would remain unchanged and we would overcome the dirty type’s
over-enforcement problem.

Consequently, the optimal uniform policy is obtained as follows:

2
Maxs,;u Z’YL (ezb (ei) —d (eb)) —Ccp
=1
s.t. pgpc (8791)

$>0 (10)

where e; = e (s, p,0;) is given by (7).!” The optimality conditions are summa-

rized in the following;:

1TFor the sake of clarity, we assume that the optimal probability of inspection is included
in the interval [0,1]. This remains valid in Proposition 7.

13



Proposition 4 The optimal uniform policy (s*,p*) is such that:

2
Z% (0;0' (n;) —d (ni))nip —c— A =0 (11)
i=1

2 C
> (O () = d () s + Aapa—fl) +7=0 (12)
i=1

A>0, p* <p°(s*,01), A(p" —p°(s,61)) =0

§°>0,17>0, 75" =0

where (A\,n) are the Lagrange multipliers associated with problem (10) and n; =

n(S*ap*79i)7 g’i’l)@’ll by (6) .

Figures 3 and 4 represent the cases of partial compliance and full noncom-
pliance, respectively, both of them compatible with the solution. In the figures,
we have included the social welfare contours, where each contour represents the
set of policies (s,p) such that social welfare remains constant.

We cannot generally conclude that the optimal standard is zero in any case.
If p* = p°(s*,01), the case of Figure 3, the optimal policy induces partial
compliance and the optimal standard is generally positive (the contrary would
require to enforce type 61 to comply with a zero standard, see footnote 16).
Therefore, the dirty type violates a positive standard, a result that is not possible
under complete information. In this case, combining (11) and (12), we obtain
that the optimal standard and inspection probability are such that the marginal
rate of substitution in terms of optimality of the induced pollution levels must
equal the marginal rate of substitution to ensure type 61’s compliance.

If p* < p°(s*,01), the case of Figure 4, the optimal policy induces full

noncompliance. Here, the optimal standard need not be zero either, as op-

14



18 Therefore, it is possible that both types vio-

posed to the one type case.
late positive standards. Since A = 0, even a positive standard implies that
010 (n1) — d (n1) > 0, which means that type 6; is over-enforced.!® Therefore,
a zero standard could restrict type 6;1’s pollution even more, with the corre-
sponding welfare decrease. By contrast, type 05 is under-enforced.

In general, we can conclude that the most likely solution is that of Figure 4,
except when monitoring costs are small or when the full noncompliance region
is small (or equivalently, when 6, is small). By (11), it is easy to see that the
monitoring costs and the optimal inspection probability are negatively related.
Thus, the smaller the monitoring costs, the larger the inspection probability
and, therefore, the more likely that the solution induces partial compliance.
Also, the smaller the full noncompliance region, the larger the likelihood that the
inspection probability induces partial compliance. The following corollary shows

that, regardless of 61, the optimal uniform policy induces partial compliance if

monitoring is costless.

Corollary 5 If c =0, the optimal uniform policy induces partial compliance.

When the optimal policy induces full noncompliance, the standard is posi-
tive for some values of the parameters. As we have already pointed out, type
01 is over-enforced at the solution. On one hand, the smaller the standard, the
larger the over-enforcement problem. On the other hand, the smaller the stan-

dard, the smaller the enforcement costs of inducing a particular pollution level.

181n the case of a unique type 0;, by (11), we can easily see that 6;b' (n;) —d’ (n;) < 0, since
nip <0, ¢>0and A = 0. But then, n > 0, by (12), since n;s > 0, which implies that s* = 0.
91f s* > 0, then n = 0. By (12), we have vy Ainis = —7vy,Azn2s, where A; =

0;b' (n;) — d’ (n;), which implies that ¢ = 542 (ngp - ﬁlinM,) . Since ngp — 225ng, =

Nils Nils
’ !
%31—752 < 0 and ¢ > 0, we then have A3 < 0 and A; > 0.

15



Therefore, there exists a trade-off between the over-enforcement problem and
the enforcement costs. Thus, the larger (smaller) the monitoring costs, the more
likely the optimal standard is zero (positive). By contrast, the larger (smaller)
type 61’s profitability, the less (more) important the over-enforcement problem
and the more likely the optimal standard is zero (positive). In consequence, the
larger 01, the smaller the interval of the monitoring costs for which the standard
is positive. Finally, a positive standard is more likely under large uncertainty,
that is, when v, takes intermediate values. This is so because under low uncer-
tainty, the solution approximates to the complete information solution, where
the optimal standard is zero (see Figure 4).

The following example illustrates all these features.

4.1 Example 1

Consider the specific functional forms:?°

e, e<1
b(e) =

l1—e, e>1
92:1, 0, < 1.
d(e) = é?

20Note that b(e) is linear, which considerably simplifies the algebra without affecting the
results. Here, p© (s,0;) = F—?(io—)7 i.e., 0;’s threshold probability does not depend on s.

16



We compute the optimal uniform policy applying Proposition 4:

p(01+1—2s)—0;

7101

We now explore the likelihood of obtaining optimal positive standards. Fig-
ure 5 illustrates the relationship between the optimal standards and the moni-
toring costs for different values of 61, in the case of large uncertainty (v, = 0.5).
If 6, = 0.8 for example, the solution induces partial compliance to s = 0.3875
if ¢ € 0,0.002]. If ¢ € [0.002,0.0024], the optimal solution induces full non-
compliance to a positive standard, which decreases when the monitoring cost
increase. Finally, if ¢ > 0.0024, the optimal standard is zero. If 67 is lower, the
solution induces partial compliance for a larger interval of the monitoring costs.
This is intuitive since the lower 01, the lower the full noncompliance region, and
therefore, the larger the restriction for the full noncompliance solution to exist.
If 6, = 0.5, we now obtain a larger interval of the monitoring costs for which
the optimal standard is positive, ¢ € [0.125,0.227]. For 6, sufficiently small, we
obtain full noncompliance to a zero standard.

A similar picture can be obtained under alternative values of 7, that is,
under different degrees of uncertainty. For example, if v; = 0.1, the range of
monitoring costs for which we obtain full noncompliance to a strictly positive
standard is ¢ € [0.0007,0.007] if §; = 0.8 and ¢ € [0.045,0.049] if §; = 0.5.

Alternatively, if v; = 0.9, we have ¢ € [0.0007,0.01] and ¢ € [0.045,0.16] for

17



01 = 0.8 and 6, = 0.5, respectively. In the limiting case of no uncertainty, the
solution jumps from partial compliance to full noncompliance to a zero standard,

with no possible violations of positive standards.

5 The Optimal Type-Contingent Policy

In this case, the regulator maximizes social welfare given in (5), considering the
firm’s optimal behavior and the incentive compatibility constraints given in (4).

We first present a useful preliminary result:

Proposition 6 Let (s7,s5,pi,p3) be the optimal type-contingent policy. Then,

pi <p° (8391)'

As in the uniform case, the optimal policy cannot induce full compliance.

The regulator now solves the following problem:

Mazs, sypp, {71 (010 (51) — d(51) — p1c) + 72 (020 (n2) — d (n2) — pac)}
s.t. p1 < p°(s1,6h)
P (si,pi,0;) > P (s4,p;,0;)

Proposition 7 The optimal type-contingent policy is given by the following

18



conditions:

71 (018 (1) — d' (n1)) s + A225L00) OP(s1.p].02)

051 _ 851
Y1 (010 (n1) — d’ (n1)) nap —¢) — A w
D1
vy (010 (n1) —d (n1)) n1s + Aapgéfl) _ aP(sg;;;;,@)
Y2 ((92[)/ (TLQ) —d (nz)) Nop — C) oP sé,pZﬁz)
P2
71 (016 (n1) — d' (n1)) n1s + Aapgifl) B ap(s;l;;’f’%)

Yo (020 (n2) — d' (n2)) nas - oP(s3,p3.02)

dso
S; 207 77220) 33772:0

A> 07 pT < pc (ST791)7 /\(pT _pc (ST791)) =0

P(S§7p§792) = P(ST7PT792) (14)

where (A, u;,m;) are the Lagrange multipliers associated with problem (13) and

n; is type 0;’s optimal response to (s*,p*) given by (6).

Note that (14) implies s > s5 > 0 and pj > p5. Thus, type 6; faces both
a larger standard and a larger probability of inspection in order to preserve
incentive compatibility. Here, the standard for type 62 could be zero but not
necessarily, since ny, > 0. By (14), type 05 is indifferent between (s}, p3) and
(s3,p5). By Lemma 2, this means that type 6; strictly prefers (s, py). At the
solution, type 6; is over-enforced and type 62 is under-enforced with respect
to the complete information case. type 62 is under-enforced and type 60, is
over-enforced with respect to the complete information case. If the regulator
were to naively impose the complete information solution, type 62 would find it
profitable to misreport its type, and this is why type 62’s incentive compatibility

constraint is binding.
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The optimality conditions mean that, at the optimum, (s1, s2, p1, p2) are such
that the marginal rate of substitution between each pair of variables in terms of
efficiency of the induced pollution levels equals the marginal rate of substitution
between that pair of variables to induce type 05’s truthful revelation.

Observe that the optimal type-contingent policy can induce either partial
compliance or full noncompliance (see Figure 6 for an illustration of the first
case). In any event, the standard for type 62 need not be zero. In this case,
type 05 is under-enforced with respect to the complete information case. Since
the slope of 65’s indifference curve is larger than the slope of the curve where
ngy is constant?’, moving along the indifference curve towards s = 0 means
that ns increases, so the under-enforcement problem is worse. Similarly to the
uniform case, the lower the standard, the lower the enforcement costs. Now
there is a trade-off between these enforcement costs and the under-enforcement
problem of type 0. Thus, the smaller (larger) the monitoring costs, the more
(less) likely the optimal standard for type 62 is positive. By contrast with the
uniform case, the larger (lower) 6;’s profitability, the larger (lower) type 65’s
under-enforcement problem associated with s = 0. Therefore, it is more likely
to have s3 > 0 (s2 = 0) when 6; is large (small).

In the next example, we illustrate all these results.

218ee footnote 24.
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5.1 Example 2

We consider the same functions of Example 1. By (8), we have:

1—2p(1—2s)+p?
Ps.p) = 2D (15)

since type 02 violates the standard.

Therefore, the incentive compatibility constraint of Proposition 7 reads:
1—=2p1 (1=251) +pi _ 1—2ps (1 —2s9) +p3

4py 4ps (16)

From (15), we have w =1 and ap(sé;gﬁmeﬂ =- 1;)12)2. The following

equations and (16) characterize the optimal separating policy:

v (p1 (01 +1—2s1) — 6q) _ 2
71 (91p1 (01 +1—2s1) — 9% + QCpif) + 2)\pi’ 1—p?

( "1 >(@)<])1(91+1—281)—91>: 2

Y1 =1/ \p1/ \2p2 (1 = s2) — 1 4 2cp3 1 —p3

7])1(914‘1—281)—91 2p2(1—82)—1
) _

= — 1 _—_——
D1 (71 ) D2 Up)

82207 772207 77252:0

A>0, p1 <01, A(p1—61)=0

We have computed the results for different values of the parameters. While
we can find solutions that induce partial compliance, however we cannot find a
solution which induces full noncompliance for any feasible values of the parame-
ters. Therefore, if the policy were to be separating, in this case it would induce
partial compliance. Thus, p; = 64.

In Figure 7, we present the relationship between the optimal standards and
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the monitoring costs, for different values of §; and v; = 0.5, that is, when there
is large uncertainty. If 8, = 0.5, there does not exist a separating solution when
¢ € [0,0.3125). While type 67 always complies with s1, type 03 violates a strictly
positive standard s when ¢ € [0.3125,0.58853]. Finally, sy = 0 if ¢ > 0.58853.
Note that both types’ standards decrease when monitoring costs increase. Also,
both inspection probabilities decrease when monitoring costs increase. When
01 = 0.8, we observe the same pattern, but here, the interval where type 602
violates a strictly positive standard is larger, i,e., ¢ € [0.016,0.70177]. Therefore,
it is more likely that we find noncompliance to strictly positive standards when
0, is large, since type 02’s under-enforcement problem associated with s = 0 is
worse in this case.

We find an analogous structure of the solution under different values of ;.
However, it is interesting to see that, the smaller v, the smaller the intervals of
the monitoring costs where type 65 violates a positive standard. Thus, if v; =
0.1, we find that type 03 violates a positive standard when ¢ € [0.0625, 0.069524]
if 6; = 0.5 and when ¢ € [0.0032,0.0804] if §; = 0.8. Conversely, if v; = 0.9,
these intervals are, respectively, ¢ € [0.5625,2.304] and ¢ € [0.028828,2.8518].

Finally, comparing Figures 5 and 7, the interval of the monitoring costs
for which we obtain violations to strictly positive standards under the uniform
policy always contains lower values than the interval under the separating pol-
icy. Regarding social welfare, we have made some computations which show
that a uniform policy may be preferred to a separating policy. For example,
if ¢ = 0.58853, 61 = 0.5 and v, = 0.5, we obtain sw(pool) = —0.11822 >
sw(sep) = —0.1478. Alternatively, if ¢ = 0.069524, 6; = 0.5 and v, = 0.1, we

have sw(pool) = 0.191169 > sw(sep) = 0.1909. Therefore, this example shows
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that type-contingent policies are not always preferred to uniform policies, form

a social viewpoint.

6 Conclusions

In this paper, we have studied optimal regulatory policies composed of pollution
standards, probabilities of inspection and fines for noncompliance in a context of
asymmetric information and imperfect enforcement, an approach different from
that which has been studied in the literature. Our model is able to explain a
salient feature of environmental regulation, namely violations to strictly positive
standards, a result that is not possible under either complete information or
incomplete information subject to perfect enforcement.

We have shown that violations to positive standards are more likely when
monitoring costs are low. Since a positive standard implies that the fine for non-
compliance is not maximum, this result is more likely when enforcement costs
are less important than the costs associated with clean type’s over-enforcement
or dirty type’s under-enforcement, depending on the policy being uniform or
type-contingent, respectively. We have shown that positive standards are more
likely under intermediate or large clean type’s profitability, depending again on
the policy being uniform or type-contingent, respectively. Finally, regulator’s
uncertainty also matters. On one hand, the larger the uncertainty, the more
likely we obtain a positive standard in the uniform case. On the other hand,
the larger the likelihood of the clean type, the more likely we have a positive
standard in the type-contingent case.

There would be no substantial changes if we considered a continuum of types
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instead of the two types presented here. If the optimal policy induced some
types to comply and others to violate the standards, the latter ones would be
the dirtiest. In that case, the optimal policy would imply partial uniformity: the
compliant types would be confronted to the same policy to avoid misreporting.

Alternatively, the model presented is also valid for a problem of several firms
clasified into two subgroups, the clean and the dirty ones. All our results easily
extend to this case, as long as we continue to assume risk neutrality.

Our results have three implications on the previous literature. First, we can
rationalize violations to positive standards. This suggests that restricting at-
tention to incentive compatible environmental taxation (where all the pollution
levels are punishable) may be restrictive. Second, we have shown that the op-
timal policy never induces full compliance, which implies that concentrating on
the subset of perfectly enforceable policies may be also restrictive. Finally, some
computations have shown that separating policies may not always be socially
preferred to pooling policies. This implies that, under some circumstances, in-

formation collection might be useless.

7 Appendix

Proof of Lemma 1.
When P (s,p,0;) = 0;b(s), the function is strictly increasing and concave

in s, but it does not depend on p. Also, 02b(s) > 61b(s). Conversely, when
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P (s,p,0;) =7 (s,p,0;), we have:

s (8,p,0;) = pF’ (n; —s) >0

7ss (8,p,0;) = pF" (n; — 8) (nis — 1) <0
7p (8,0,0;) = —F (n; —s) <0

Tpp (8,0,0;) = —=F' (n; — 8)nyp > 0

Tsp (Sap79i) = FI (nz - S) +pF” (n’L - S)nip >0

where n; = n(s,p,0;). Also, we trivially obtain that 7 (s,p,02) > 7 (s, p,01).

Summing up both possibilities we obtain the desired result.

Finally, 7 (s,0,60;) = max.~q0;b(e) = 6;b(€), for all i. Thus, P (s,0,0;) =

0;b(e), as desired. m

Proof of Lemma 2.

In 6;’s compliance region, the expected payoff is ;b (s), that is, it does not

depend on the probability of inspection. Therefore, indifference curves have an

infinite slope. In the noncompliance region, the expected payoff is 7 (s,p,0;) =

b(n(s,p,0;)) —pF (n(s,p,0;) — s). Implicitly differentiating = (s,p, 0;) = k, we

obtain:

dp _ pF'(n(s,p,0;) — s)

& " Fn(sp )= O

Now, differentiating (22) with respect to s we have:

d?p F' dp

p 2
P lr—= s lret +=5 (F"F — (F") ) (nis—1) >0

F2

25



since ngs < 1 and F'F — (F')> < 0.

(For analytical convenience, we prove the last part considering a continuum
of types. The result is easily adapted to the case in which 0 takes discrete
values.)

In the compliance region, both types’ indifference curves are vertical. In the
partial compliance region, 61’s are vertical and 65’s are strictly increasing In the

full noncompliance region, we differentiate (22) with respect to 6 to obtain:

d?p

= TOF = (F")?
dsd9 "*T T (F)

5——pny (s,p,0) (24)

Since F"F — (F’)2 < 0, dijd% |r=x and ng (s,p,0) have the opposite sign.
Differentiating (6) with respect to €, we obtain ng (s,p,0) = 7W+;)F,/ > 0.
Therefore, di;% lr=£< 0, as desired. m

Proof of Proposition 3.

Assume first that p > p©(s,02), that is, the pooling policy induces full

compliance. The problem the regulator faces in this case is:

2
Maz,p, > 7, [0:b (e (s,p,0:)) — d (e (s,p.0;))] — cp

=1
s.t.p>p°(s,02) (25)

Since p > p° (s,02), we then have e (s, p,0;) = s for all i. The Lagrangian of

problem (25) is the following:

2
L(s,p,X) =Y 7 [0ib(s) = d(s)] = cp = A(p° (5,02) — p)
=1
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where A > 0 is the corresponding Lagrange multiplier. The interior solution is

given by the following Kuhn-Tucker conditions:*?

dp® (s,02)

ds =0

Y1 (010 () — d' (5)) + 72 (02" (s) —d' (s)) — A
c—A=0

A(p©(s,02) —p) =0

Since ¢ > 0, we have A > 0 and p° (s,02) = p, which leads to:

> (o 67) = () = PG ) <o (26)

p* =p°(s",02)

Since 61 < 0, (26) implies that 6,0 (s*) — d' (s*) — 22020~ ( and

ds

020 (s*) — d' (s*) — cwcdss’ﬁ2 > 0. This last expression can be written as

(020 (s*) —d (s%)) dfc — ¢ < 0, since % < 0. By the continuity of the
sanction at e — s = 0, we can infinitesimally decrease p to increase social wel-
fare, without affecting 6;’s behavior. Therefore, a uniform policy which induces
full compliance is never optimal.

We now consider the case in which p€ (s,601) < p < p°(s,62). This corre-

sponds to the partial compliance region, where the clean type strictly prefers to

comply with the standard. Now, the problem is:

2
Maxs,p Z’Yz [91b (6 (Svpaei)) 7d(€ (svpv 91))] —Cp
i=1

s.t. p > p°(s,b1) (27)

22The assumptions of the model ensure that these conditions are necessary an sufficient for
an interior optimum. This continues to hold for the remaining optimality results of the paper.
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where s = e (s,p,61) and ny = e (s,p,02) . The Kuhn-Tucker conditions are the

following:

¢ (5,91)

V1 (010 (s) = d' (5)) + 72 (020 (n2) — d' (n2)) n2s — )\dp ds 0

Yo (020" (n2) —d' (n2))nap —c+A=0

A(p©(s,01)—p) =0

where A > 0 is the corresponding Lagrange multiplier of problem (27) .

Observe that A = ¢ — v, (02 (n2) — d’ (n2)) ngp, > 0. Since p > p©(s,01),
A must be equal to 0. This implies that ¢ = v, (620" (n2) — d’ (n2)) nep, which
means that ¢ > (92b' (nz) —d (nz)) Nap, since 7o < 1. Therefore, welfare can
increase if p decreases infinitesimally, since type 61 continues to comply with s.
Therefore, the optimal uniform policy cannot be such that p > p©(s,61). =

Proof of Corollary 5.

Assume, to the contrary, that A\ = 0, that is, the optimal policy induces
full noncompliance when ¢ = 0. By (11), we have v; Aini, = —7y9Aonap, where
A; =01 (n;) —d (n;) for all i. Considering (12), it must be true that:

n2
n= *’72A2 ( pnls - n23>
Nip

Since Ay < 0 and Z_i':nls — ngs > 0 (see footnote 19), we then have n < 0,
which contradicts the fact that the solution induces full noncompliance.

Proof of Proposition 6.

First, a type-contingent policy in the full compliance region is not possi-

ble since indifference curves do not cross. Thus, any attempt to set a type-
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contingent policy would induce misreporting of the type with the lowest assigned
standard. Also, any policy that assigns the same standard but a different prob-
ability is incentive compatible but suboptimal, since both probabilities can be
decreased till the boundary p° (s, 82) without distorting incentives and reducing
monitoring costs.

Next, consider the case of partial compliance where p; > p€(s1,61). The

problem is:

Mazxg, sy pyp, {71 (010 (51) — d(51) = p1€) + 75 (02b (n2) — d (n2) — pac)}
s.t. p1 > p°(s1,01)
P(S’i7p’i79’i) Z P($j7pjvaz)7 Z7.] = 1727 { 7&.]

$i>0,i=1,2 (28)

Considering A > 0 to be the Lagrange multiplier associated with the first

restriction in problem (28), the Kuhn-Tucker conditions associated with p; are:

A =7cC

A>0, A(p©(s1,01) —p1) =0

Since p; > p©(s1,01), we then must have A = 0. However, A = v;¢ > 0,
which is a contradiction. Therefore, p; < p©(s1,61), as desired. m

Proof of Proposition 7.
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The Kuhn-Tucker conditions of problem (13) are the following:

6P(ST7PT791) _ 6P(ST7PT792)

/ g N _
Y1 (016 (n1) —d (1)) nip —¢) = A+ 1y 901 Mo 901 0
dp° (01) 0P (s7,p7,01) 0P (s7,p7,02)
/ oy ) - ) _
Y1 (620" (na) — d' (n1)) mas + A s, + i 951 Ha 031 0
OP (55, p5, 0 OP (s3.p5,0
1 (03 (n2) — & () gy — ) — py L BoPB O ) OP(5:05,60) _
Op2 Ip2

aP(SEaP§791) i aP(SEaP}ez)

=0
652 2 682

Vo (026 (n2) — d' (n2)) n2s — 11y
s1>0,m =0

5320, 3 =20, s3m, =0

A 20, pr <p°(s1,01), A(py —p°(s1,01)) =0

Ky > 07 P(Srvp;kval) > P(S;7p;791)7 i (P (s;kvp;k791) 7P($;7p;791)) =0

where A > 0, pu; > 0, m; > 0 are, respectively, the Lagrange multipliers associated
with the restrictions in problem (13).

Assume first that 1 = py =15 = 0. This implies that 058 (ng) —d’ (ng) =0
and ¢ = 0, since ng, < 0. Since ¢ > 0, either one of the incentive compatibility
constraints must be binding or 75 > 0.23 Assume first that p; > 0 and p, =
15 = 0. However, ny can be kept constant decreasing both (sg, p2) through ex-
pression (6) without distorting the incentive compatibility constraints.?* There-
fore, py > 0, py = ny = 0 is not possible.

Now, consider p; = 0, uy = 0,775, > 0. In this case, first order conditions

would reduce to 61 (s1) — d' (s1) = cdp;(el) and (020 (n2) —d' (n2)) ngy =

S1

¢, respectively, the optimal compliance solution for type #; and the optimal

231t is easy to see that both incentive compatibility constraints cannot be binding except in
the case of a pooling policy. Thus, gy > 0, s > 0 is not possible if the policy is separating.

24 . . d _ n _ pF” d d
To see this, consider (22) and 22 |n,= fﬁ = P55 to conclude that 2 [,,< F& |p,,

since (F')? — FF"" > 0. By Lemma 2, we then have % lngy < % |p, -

30



noncompliance solution for type 65 if information were complete. But, in this
case, type 02 would prefer to misreport its type. Therefore, p; =0, py = 0,15 >
0 is not possible. For the same reason, p; > 0, puy = 0,15 > 0 is not possible
either.

Therefore, p1; = 0 and py > 0. As for 1y, both n, = 0 and 7y > 0 are

compatible with the solution, thus obtaining the desired result. m
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Figure 2: The uniform policy under full compliance
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Figure 3: The optimal uniform policy inducing partial compliance
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Figure 4: The optimal uniform policy inducing full noncompliance
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Figure 5: The optimal standard in the uniform case
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Figure 6: The optimal type-contingent policy when it induces partial compliance
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Figure 7: The optimal standards in the type-contingent case
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