Exploiting symmetry on the Universal Polytope

Julian Pfeifle
(Universitat Politècnica de Catalunya)

VIII JMDA Almería

Motivation

What is the minimal number of simplices needed to triangulate a convex polytope?

Motivation

Officially,
this is important in

- algorithms for iteratively finding fixed points (i.e., Nash equilibria)
- financial applications

For me,
this is important because

- every time people have tried to solve the problem, interesting mathematics came out

Overview

Previous work:

(1) People have looked at cubes and products of simplices
(2) Focus on explicit dimensions: Lower bounds for $2 \leq d \leq 11$
(3) Focus on asymptotics: product constructions, hyperbolic geometry
(9) some structural insights (e.g., the Universal Polytope)

Today:
(1) Reduction of symmetry
(2) Application to triangulations of manifolds

Explicit lower bounds

[Hughes 1993-4], [Hughes \& Anderson 1996]

Dimension d of cube	3	4	5	6	7	8	$9 \ldots$
min \# simplices $\sigma\left(\square^{d}\right)$	5	16	67	308	1493	≥ 5522	$\geq 26593 \ldots$

[Seacrest \& Su, 2009]
$\Delta^{s} \times \Delta^{t}$
Explicit lower bounds on $\sigma\left(\Delta^{s} \times \Delta^{t}\right)$ for $s+2 t \leq 12$
[Smith, 2000]
$\square^{d \gg 0}$
$\sigma\left(\square^{d}\right) \geq \frac{\left.\text { Hvol(regular ideal } \square^{d}\right)}{\text { Hvol }\left(\text { regular ideal } \Delta^{d}\right)} \geq \frac{1}{2} 6^{n / 2}(n+1)^{-\frac{n+1}{2}} n!$

Explicit upper bounds

[Haiman, 1991]

$$
\sigma\left(\square^{d \gg 0}\right) \leq \rho^{d} \cdot d!, \quad \text { for some } \rho<1
$$

uses a product formula, and induction.

Explicit upper bounds

[Haiman, 1991]

$$
\sigma\left(\square^{d \gg 0}\right) \leq \rho^{d} \cdot d!, \quad \text { for some } \rho<1
$$

uses a product formula, and induction.
[Orden \& Santos, 2003]

$$
\rho \leq 0.8159
$$

- induction start: $\square^{3} \times \triangle^{2}$
- use CPLEX to solve a linear program with 74400 variables
- 37 CPU hours on a SUN UltraSparc

The Universal Polytope

$\chi(\mathcal{T})=\left[\begin{array}{cccccccccc}123 & 124 & 125 & 134 & 135 & 145 & 234 & 235 & 245 & 345 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}\right] \in\{0,1\}^{\binom{5}{3}}$

$$
\mathcal{U}(\mathcal{A})=\operatorname{conv}\left\{\chi_{\mathcal{T}}: \mathcal{T} \text { triang of } \mathcal{A}\right\} \subset \mathbb{R}^{\left(d_{+1}^{n}\right)}
$$

We need to understand $\mathcal{U}(\mathcal{A})$.
For example, what are its equations?

The Universal Polytope

$\chi(\mathcal{T})=\left[\begin{array}{cccccccccc}123 & 124 & 125 & 134 & 135 & 145 & 234 & 235 & 245 & 345 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}\right] \in\{0,1\}^{\binom{5}{3}}$

$$
\begin{aligned}
\mathcal{U}(\mathcal{A}) & =\operatorname{conv}\left\{\chi_{\mathcal{T}}: \mathcal{T} \text { triang of } \mathcal{A}\right\} \subset \mathbb{R}^{\binom{n+1}{d+1}} \\
\sigma(\mathcal{A}) & =\text { min. cardinality of a triangulation } \\
& =\min _{\mathcal{T}}\left\{\sum_{\Delta \in \mathcal{T}} x_{\Delta}: x \in \mathcal{U}(\mathcal{A})\right\}
\end{aligned}
$$

We need to understand $\mathcal{U}(\mathcal{A})$.
For example, what are its equations?

The Cocircuit Equations

$$
\begin{gathered}
L \in\{0, \pm 1\}_{\mathrm{int}}^{\Sigma_{\text {in }}^{-1} \times \Sigma^{d}} \\
L \chi_{\mathcal{T}}^{\top}=0
\end{gathered}
$$

These generate all the linear relations among the entries of $\chi_{\mathcal{T}}$.

$$
e=24: \quad x_{234}-x_{124}-x_{245}=0
$$

Symmetry

Optimization over $\mathcal{U}\left(\square^{d}\right)$ is only feasible for $d \leq 5$.

- Hughes \& Anderson consider equivalence classes of simplices in such a way that non-congruent simplices become equivalent
- However, little structural insight, and no asymptotics

Our approach: form equivalence classes of simplices w.r.t. Aut($\left.\square^{d}\right)$

$$
\Delta_{1} \cong \Delta_{2} \quad \text { iff } \quad \exists g \in \operatorname{Aut}\left(\square^{d}\right): g\left(\Delta_{1}\right)=\Delta_{2}
$$

Exploiting symmetry reduces the dimension

What are the images of the cocircuit equations?

Exploiting symmetry: $G=\langle(12)(35),(15)(24)\rangle$

Exploiting symmetry: $G=\langle(12)(35),(15)(24)\rangle$

symmetry classes of triangles:

$$
\begin{aligned}
& \overline{123}=\{123,125,145,234,345\}, \\
& \overline{124}=\{124,245,134,135,235\}
\end{aligned}
$$

Exploiting symmetry: $G=\langle(12)(35),(15)(24)\rangle$

symmetry classes of triangles:

$$
\begin{aligned}
& \overline{\overline{123}}=\{123,125,145,234,345\}, \\
& \overline{124}=\{124,245,134,135,235\}
\end{aligned}
$$

cocircuit relations: $x_{234}=x_{124}+x_{245}$

$$
\Longrightarrow \quad y_{123}=2 y_{124}
$$

Exploiting symmetry: $G=\langle(12)(35),(15)(24)\rangle$

symmetry classes of triangles:

$$
\begin{aligned}
& \overline{\overline{123}}=\{123,125,145,234,345\}, \\
& \overline{124}=\{124,245,134,135,235\}
\end{aligned}
$$

cocircuit relations: $x_{234}=x_{124}+x_{245}$
volume relation: $x_{234}+x_{124}+x_{145}=1$

$$
\begin{array}{ll}
\Longrightarrow & y_{123}=2 y_{124} \\
\Longrightarrow \quad & y_{123}+y_{124}=3
\end{array}
$$

Exploiting symmetry: Setting up a linear program

$\min y_{\overline{123}}+y_{\overline{124}}$

$$
\text { s.t. } \begin{aligned}
y_{\overline{123}} & =2 y_{\overline{124}} \quad \text { cocircuit equation } \\
y_{\overline{123}}+y_{\overline{124}} & =3 \\
y_{\overline{123}}, y_{\overline{124}} & \geq 0
\end{aligned} \quad \text { volume equation } \quad .
$$

Exploiting symmetry: Setting up a linear program

$\min y_{123}+y_{124}$
s.t. $\quad y_{\overline{123}}=2 y_{\overline{124}} \quad$ cocircuit equation
$y_{\overline{123}}+y_{\overline{124}}=3 \quad$ volume equation

$$
y_{\overline{123}}, y_{\overline{124}} \geq 0 \quad y_{\overline{123}}=2, y_{\overline{124}}=1
$$

Implementation

- Calculation with symmetry groups:
polymake, permlib
- Symmetry groups of regular polytopes:

Need to calculate exactly with quadratic extensions $\mathbb{Q}[\sqrt{d}]$ Implemented this in the
upcoming polymake 2.13

- Payoff: Can calculate lower bounds for the simplexity of quotient manifolds (e.g., Poincaré homology 3-sphere = dodecahedron mod identifications on the boundary)

Results

- Remember Orden \& Santos:
$\square^{3} \times \triangle^{2}$ needs 74400 variables, 37 CPU hours

Results

- Remember Orden \& Santos:
$\square^{3} \times \triangle^{2}$ needs 74400 variables, 37 CPU hours
Our approach: 323 variables and 414 constraints; just under 4 minutes (exactly), or 0.10 seconds (floating-point)

Results

- Remember Orden \& Santos:
$\square^{3} \times \triangle^{2}$ needs 74400 variables, 37 CPU hours
Our approach: 323 variables and 414 constraints; just under 4 minutes (exactly), or 0.10 seconds (floating-point)
- Simplexity of \square^{7} : under 1 hour

Results

- Remember Orden \& Santos:
$\square^{3} \times \triangle^{2}$ needs 74400 variables, 37 CPU hours
Our approach: 323 variables and 414 constraints; just under 4 minutes (exactly), or 0.10 seconds (floating-point)
- Simplexity of \square^{7} : under 1 hour
- Simplexity of \square^{8} : ???
(have enumerated all 41258870 representatives of the 4×10^{14} simplices of dim 7 ; occupy 1 GB)

Results

- Remember Orden \& Santos:
$\square^{3} \times \triangle^{2}$ needs 74400 variables, 37 CPU hours
Our approach: 323 variables and 414 constraints; just under 4 minutes (exactly), or 0.10 seconds (floating-point)
- Simplexity of \square^{7} : under 1 hour
- Simplexity of \square^{8} : ???
(have enumerated all 41258870 representatives of the 4×10^{14} simplices of dim 7; occupy 1 GB)
- Simplexity of Davis' 4-manifold (120-cell mod identifications): ??? (have enumerated all 44238243 representatives of 4-simplices; occupy 773M)

Implementation

```
time polymake 'my $c=product(cube(3), simplex(2));
                    linear_symmetries($c,1);
                print $c->SIMPLEXITY_LOWER_BOUND;'
polymake: used package cddlib
    Implementation of the double description method of Motzkin et al.
    Copyright by Komei Fukuda.
    http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
38
real 3m26.755s
user 3m26.617s
sys 0m0.084s
polymake 'truncated_icosahedron() ->VISUAL;'
polymake 'print truncated_icosahedron() ->VOLUME;'
125/4 + 43/4r5
```


Outlook

- Complete calculations for Davis' manifold
- Triangulations with other special properties: bipartite dual graph (interesting for lower bounds for the number of real roots of certain sparse polynomial systems)
- Different direction: Sharpen asymptotic lower bounds using hyperbolic geometry

Gracias!

