
Data Streams as Random Permutations: the
Distinct Element Problem

Conrado Martínez,
Univ. Politècnica de Catalunya

VIII JMDA, Almería, Julio 2012

Joint work with:

A. Helmi J. Lumbroso A. Viola

1 / 21

Introduction

A data stream is a (very long) sequence

S = s1, s2, s3, . . . , sN

of items si drawn from some (large) domain U, si ∈ U

The goal: to compute θ = θ(S), but there are limitations to
our computational power:

a single pass over the sequence
very short time for computation on each item
very small auxiliary memory: M� N; ideally M = Θ(1) or
M = O(logN)
no statistical hypothesis on the data

2 / 21

Introduction

There are lots of applications for this data strem model:
Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval⇒ similarity index
Data mining
And many more . . .

3 / 21

Introduction

We will often see S as a multiset

{y1
f1 , . . . ,ynfn}, fi = frequency of the ith distinct element yi

Some typical problems:
The cardinality of S: card(S) = n 6 N = |S|⇐ This paper
The elements yi such that:

fi > k (k-elephants)
fi > c ·N, 0 < c < 1 (c-icebergs)
fi < k (k-mice)

4 / 21

Introduction

Small auxiliary memory⇒
Exact solution too costly (or impossible)⇒

Randomized algorithms⇒
Estimation θ̂ of the quantity θ

The estimator θ̂ must be unbiased

E
[
θ̂
]
= θ

The estimator must be accurate (small standard error)

SE
[
θ̂
]
:=

√
Var

[
θ̂
]

E
[
θ̂
] < ε,

e.g., ε = 0.01 (1%)
5 / 21

Estimating the cardinality

The first ingredient:
Map each item si of the stream to a value in (0, 1) using a
hash functionh : U→ (0, 1)⇒ reproducible randomness
The multiset S is mapped to a multiset

S ′ = h(S) = {x1
f1 , . . . , xnfn},

with xi = hash(yi), fi = # of xi’s
The set of distinct elements X = {x1, . . . , xn} is a set of n
independent and uniformly distributed real numbers in
(0, 1)

6 / 21

Estimating the cardinality
The second ingredient:

Define some easily computable observable R which is
insensitive to repetitions, that is, it only depends on the
underlying set of distinct elements:

R = R(S) = R(X)

Perform the probabilistic analysis of R for a set X of n
random real numbers. If

En [R] = ϕ(n)

then it is reasonable to assume that the expected value of
ϕ−1(R) will be close to n; we will need some correcting
factor α to get an (asymptotically) unbiased estimator

En
[
αϕ−1(R)

]
= n+ l.o.t.

7 / 21

Probabilistic Counting

For instance, in Flajolet & Martin’s Probabilistic Counting
(1985) the observable R is the length of the longest prefix
0.0R−11 such that all prefixes 0.0k1 appear among the
hashed values, for 0 6 k 6 R− 1
R is easy to compute and it does not depend on repetitions

En [R] ≈ log2 n

and
En
[
α2R

]
= n+ o(n)

for

α−1 =
eγ
√

2
3

∏
k>1

(
(4k+ 1)(2k+ 1)

2k(4k+ 3)

)(−1)ν(k)

≈ 0.77351 . . .

8 / 21

Other estimators

Based on bit patterns
LogLog: Durand, Flajolet (2003)
HyperLogLog: Flajolet, Fusy, Gandouet, Meunier (2007)

Based on order statistics (e.g., the kth smallest in the set
of distinct hash values)

Bar-Yossef, Kumar & Sivakumar (2002)
Bar-Yossef, Jayram, Kumar, Sivakumar & Trevisan (2002)
Giroire (2005, 2009)
Chassaing & Gérin (2006)
Lumbroso (2010)

9 / 21

Our estimator: Recordinality

RECORDINALITY counts the number of records (local
maxima) in the sequence

3 6 1 2 5 4 7 8

r = 4

1 2 1 2 4 4 7 8 relative rank

It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators

10 / 21

Our estimator: Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all
j < i

It is well known that the number r of records satisfies

En [r] = logn+ O(1)

hence we anticipate that er should give us an estimate of n
The notion is generalized to k-records: σ(i) is a k-record if
σ(i) is among the k largest elements in σ(1), . . . ,σ(i)

11 / 21

Our estimator: Recordinality

procedure RECORDINALITY(S, k)
fill T with the first k distinct elements (hash values)
of the stream S

r← k

for all s ∈ S do
x← hash(s)
if x > min(T)∧ x 6∈ T then
r← r+ 1; T ← T ∪ {x} \ min(T)

end if
end for
return Z = αk · er . αk is a correcting factor

end procedure

Memory: k hash values (k logn bits) + 1 counter (log logn bits)

12 / 21

Our estimator: Recordinality

Theorem (Helmi, Martínez and Panholzer, 2012)

Let rk denote the number of k-records in a permutation of size
n. The exact distribution of rk is

Probn {rk = j} =


[[n = j]] if k > n,

kj−k
k!
n!

[
n− k+ 1
j− k+ 1

]
if k 6 j 6 n

[
n
j

]
= signless Stirling numbers of the first kind; [[P]] = 1 if P

true, = 0 otherwise

13 / 21

Our estimator: Recordinality

The expected value of rk is k log(n/k) + l.o.t.; it is
reasonable then to assume that for

Z := k exp(αk · rk)

we should have En [Z] ∼ n for some suitable correcting
factor αk
We can use the formula for Probn {rk = j} to explictly
compute En [Z] and to determine φ, and then compute the
standard error

14 / 21

Our estimator: Recordinality

Theorem
The RECORDINALITY estimator

Z := k

(
1 +

1
k

)rk−k+1

− 1

is an unbiased estimator of n: En [Z] = n.

15 / 21

Our estimator: Recordinality

Theorem

The accuracy of RECORDINALITY, expressed in terms of
standard error, asymptotically satisfies

SEn [Z] ∼

√(n
ke

) 1
k
− 1

16 / 21

Our estimator: Recordinality

For practical values of n, even for small k, the estimates may
be significantly concentrated.
For instance, for k = 10, the estimates are within σ, 2σ, 3σ of
the exact count in respectively 91%, 96% and 99% of all cases.

100 200 300 400 500

0.6

0.8

1.0

1.2

1.4

1.6

1.8

100 200 300 400 500

0.9

1.0

1.1

1.2

1.3

k = 64 k = 256
500 estimates of cardinality in Shakespare’s A Midsummer Night’s Dream; top and bottom lines (5%), centermost

lines (70%); gray area (1 standard deviation)

17 / 21

Other issues

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

Original texts Randomly permuted texts

RECORDINALITY does not depend on the hash values, only
the relative ordering⇒ we can avoid using the hash
function, provided the distinct elements appear (for the first
time) in random order
We can combine RECORDINALITY with any of the exisiting
estimators since they are independent; a suitably weighted
sum of the estimations will have less variance⇒ better
accuracy

18 / 21

Other issues

The table of k largest hash values gives us a random
sample of k distinct elements out of the n⇒ distinct
sampling for free
Indeed, distinct elements “enter” the table or not according
to their hash value, a random uniform number
An easy modification allows us to have a random sample
of distinct elements with expected size k log(n/k)⇒
variable-size sampling

19 / 21

Concluding remarks

First (?) application of combinatorics of random
permutations to data stream algorithms
Simple and elegant algorithms
Nice combinatorics and mathematical analysis
Many extensions to explore: sampling, sliding windows,
similarity index,

20 / 21

Thanks a lot for your
attention!

¡Gracias por vuestra
atención!

