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Introduction

@ A data stream is a (very long) sequence

8 =81,82,83,...,SN

of items s; drawn from some (large) domain U, s; € U

@ The goal: to compute 6 = 6(8), but there are limitations to
our computational power:

a single pass over the sequence

very short time for computation on each item

very small auxiliary memory: M <« N;ideally M =0©(1) or
M = 9(log N)

no statistical hypothesis on the data
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Introduction

There are lots of applications for this data strem model:
@ Network traffic analysis = DoS/DDoS attacks, worms, . ..
@ Database query optimization
@ Information retrieval = similarity index
@ Data mining
@ And many more ...




Introduction

We will often see 8§ as a multiset
', ..oy, f, = frequency of the ith distinct element y;

Some typical problems:
@ The cardinality of 8: card(8) =n < N = |§| <« This paper
@ The elements y; such that:
e f; >k (k-elephants)
@ fi >c-N,0<c<1(cicebergs)
o i <k (k-mice)
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Introduction

Small auxiliary memory =
Exact solution too costly (or impossible) =
Randomized algorithms =

Estimation 8 of the quantity 0

@ The estimator 6 must be unbiased
E[6] =0
@ The estimator must be accurate (small standard error)

A Var [6]
SE [9] = Ei[é] <€,

e.g., € = 0.01 (1%)



Estimating the cardinality

The first ingredient:

@ Map each item s; of the stream to a value in (0, 1) using a
hash functionh : U — (0, 1) = reproducible randomness

@ The multiset 8 is mapped to a multiset
8 =h(8)={x1"",....xn "}

with x; = hash(yi), fi =#of x;’s

@ The set of distinct elements X = {x4,...,xn}isasetof n
independent and uniformly distributed real numbers in
(0,1)



Estimating the cardinality
The second ingredient:

@ Define some easily computable observable R which is
insensitive to repetitions, that is, it only depends on the
underlying set of distinct elements:

R =R(8) = R(X)

@ Perform the probabilistic analysis of R for a set X of n
random real numbers. If

En [R] = (p(TL)

then it is reasonable to assume that the expected value of
@~ 1(R) will be close to n; we will need some correcting
factor o to get an (asymptotically) unbiased estimator

En [mw (R)} —n+lot



Probabilistic Counting

@ For instance, in Flajolet & Martin’s Probabilistic Counting
(1985) the observable R is the length of the longest prefix
0.0R~"1 such that all prefixes 0.0%1 appear among the
hashed values, for0 < k < R—1

@ Ris easy to compute and it does not depend on repetitions
En [Rl = log, n

and
En [a2%] =n +o(n)

for

ol eV\/EH ((4k—|—1)(2k—|—1)

ALY
~ 0.77351 ...
2k (4k + 3) > 0-7735

k>1



Other estimators

@ Based on bit patterns

e LoglLog: Durand, Flajolet (2003)
e HyperLoglLog: Flajolet, Fusy, Gandouet, Meunier (2007)

@ Based on order statistics (e.g., the kth smallest in the set
of distinct hash values)

Bar-Yossef, Kumar & Sivakumar (2002)

Bar-Yossef, Jayram, Kumar, Sivakumar & Trevisan (2002)

Giroire (2005, 2009)

Chassaing & Gérin (2006)

Lumbroso (2010)
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Our estimator: Recordinality

@ RECORDINALITY counts the number of records (local
maxima) in the sequence

36125478
121244 7 8 relative rank
@ |t depends in the underlying permutation of the first

occurrences of distinct values, very different from the other
estimators
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Our estimator: Recordinality

@ o(i) is a record of the permutation o if o(i) > o(j) for all
j<i
@ It is well known that the number r of records satisfies

Enlrl =logn+0(1)

hence we anticipate that e” should give us an estimate of n

@ The notion is generalized to k-records: o(i) is a k-record if
o(1) is among the k largest elements in o(1),..., o(1)
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Our estimator: Recordinality

procedure RECORDINALITY(S, k)
fill T with the first k distinct elements (hash values)
of the stream §
rk
forall s € Sdo
x < hash(s)
if x >min(T) Ax ¢ T then
T« 14+ 1; T+ TU{x}\ min(T)
end if
end for
return Z = oy - e" > «y is a correcting factor
end procedure

Memory: k hash values (klog n bits) + 1 counter (loglogn bits)
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Our estimator: Recordinality

Theorem (Helmi, Martinez and Panholzer, 2012)

Let ry denote the number of k-records in a permutation of size
n. The exact distribution of vy is

n =] ifk >n,
Proby, {r, =j} =14 I T —
it Ll I,
nj—k+1

[}] = signless Stirling numbers of the first kind; [P] = 1 if P
true, = 0 otherwise
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Our estimator: Recordinality

@ The expected value of ri is klog(n/k) + l.o.t.; it is
reasonable then to assume that for

L= keXp((Xk “Tk)

we should have E,, [Z] ~ n for some suitable correcting
factor o

@ We can use the formula for Prob,, {rx = j} to explictly
compute E,, [Z] and to determine ¢, and then compute the
standard error
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Our estimator: Recordinality

Theorem
The RECORDINALITY estimator

1 TkA*k‘F1
Z:=k<1+i) —1

is an unbiased estimator of n: E,, [Z] = n.
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Our estimator: Recordinality

Theorem

The accuracy of RECORDINALITY, expressed in terms of
standard error, asymptotically satisfies

SE, 1Z) ~ (];)L_1
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Our estimator: Recordinality

For practical values of n, even for small k, the estimates may
be significantly concentrated.

For instance, for k = 10, the estimates are within o, 20, 30 of
the exact count in respectively 91%, 96% and 99% of all cases.

k = 64 k =256

500 estimates of cardinality in Shakespare’s A Midsummer Night's Dream; top and bottom lines (5%), centermost
lines (70%); gray area (1 standard deviation)
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Other issues

% 0 £l £

Original texts Randomly permuted texts

@ RECORDINALITY does not depend on the hash values, only
the relative ordering = we can avoid using the hash
function, provided the distinct elements appear (for the first
time) in random order

@ We can combine RECORDINALITY with any of the exisiting
estimators since they are independent; a suitably weighted
sum of the estimations will have less variance = better
accuracy
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Other issues

@ The table of k largest hash values gives us a random
sample of k distinct elements out of the n = distinct
sampling for free

@ Indeed, distinct elements “enter” the table or not according
to their hash value, a random uniform number

@ An easy modification allows us to have a random sample
of distinct elements with expected size klog(n/k) =
variable-size sampling
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Concluding remarks

@ First (?7) application of combinatorics of random
permutations to data stream algorithms

@ Simple and elegant algorithms
@ Nice combinatorics and mathematical analysis

@ Many extensions to explore: sampling, sliding windows,
similarity index, ......
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