Data Streams as Random Permutations: the Distinct Element Problem

Conrado Martínez, Univ. Politècnica de Catalunya

VIII JMDA, Almería, Julio 2012

Joint work with:

A. Helmi

J. Lumbroso

A. Viola

Introduction

- A data stream is a (very long) sequence

$$
\mathcal{S}=s_{1}, s_{2}, s_{3}, \ldots, s_{N}
$$

of items s_{i} drawn from some (large) domain $\mathcal{U}, s_{i} \in \mathcal{U}$

- The goal: to compute $\theta=\theta(\mathcal{S})$, but there are limitations to our computational power:
- a single pass over the sequence
- very short time for computation on each item
- very small auxiliary memory: $M \ll N$; ideally $M=\Theta(1)$ or $M=\mathcal{O}(\log \mathrm{N})$
- no statistical hypothesis on the data

Introduction

There are lots of applications for this data strem model:

- Network traffic analysis \Rightarrow DoS/DDoS attacks, worms, ...
- Database query optimization
- Information retrieval \Rightarrow similarity index
- Data mining
- And many more ...

Introduction

We will often see \mathcal{S} as a multiset

$$
\left\{y_{1}{ }^{f_{1}}, \ldots, y_{n}{ }^{f_{n}}\right\}, \quad f_{i}=\text { frequency of the ith distinct element } y_{i}
$$

Some typical problems:

- The cardinality of \mathcal{S} : $\operatorname{card}(\mathcal{S})=\mathrm{n} \leqslant \mathrm{N}=|\mathcal{S}| \Leftarrow$ This paper
- The elements y_{i} such that:
- $f_{i} \geqslant k$ (k-elephants)
- $f_{i} \geqslant c \cdot N, 0<c<1$ (c-icebergs)
- $f_{i}<k$ (k-mice)

Introduction

Small auxiliary memory \Rightarrow

Exact solution too costly (or impossible) \Rightarrow

Randomized algorithms \Rightarrow
Estimation $\hat{\theta}$ of the quantity θ

- The estimator $\hat{\theta}$ must be unbiased

$$
\mathrm{E}[\hat{\theta}]=\theta
$$

- The estimator must be accurate (small standard error)

$$
\operatorname{SE}[\hat{\theta}]:=\frac{\sqrt{\operatorname{Var}[\hat{\theta}]}}{\mathrm{E}[\hat{\theta}]}<\epsilon
$$

e.g., $\epsilon=0.01$ (1\%)

Estimating the cardinality

The first ingredient:

- Map each item s_{i} of the stream to a value in $(0,1)$ using a hash functionh : $\mathcal{U} \rightarrow(0,1) \Rightarrow$ reproducible randomness
- The multiset \mathcal{S} is mapped to a multiset

$$
\mathcal{S}^{\prime}=\mathrm{h}(\mathcal{S})=\left\{x_{1} \mathrm{f}_{1}, \ldots,{x_{n}}^{\mathrm{f}_{n}}\right\},
$$

with $x_{i}=\operatorname{hash}\left(y_{i}\right), f_{i}=\#$ of x_{i} 's

- The set of distinct elements $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n independent and uniformly distributed real numbers in $(0,1)$

Estimating the cardinality

The second ingredient:

- Define some easily computable observable R which is insensitive to repetitions, that is, it only depends on the underlying set of distinct elements:

$$
R=R(\mathcal{S})=R(X)
$$

- Perform the probabilistic analysis of R for a set X of n random real numbers. If

$$
\mathrm{E}_{\mathrm{n}}[\mathrm{R}]=\varphi(\mathrm{n})
$$

then it is reasonable to assume that the expected value of $\varphi^{-1}(R)$ will be close to n; we will need some correcting factor α to get an (asymptotically) unbiased estimator

$$
\mathrm{E}_{\mathrm{n}}\left[\alpha \varphi^{-1}(\mathrm{R})\right]=\mathrm{n}+\text { l.o.t. }
$$

Probabilistic Counting

- For instance, in Flajolet \& Martin's Probabilistic Counting (1985) the observable R is the length of the longest prefix $0.0^{R-1} 1$ such that all prefixes $0.0^{k} 1$ appear among the hashed values, for $0 \leqslant k \leqslant R-1$
- R is easy to compute and it does not depend on repetitions

$$
\mathrm{E}_{\mathrm{n}}[\mathrm{R}] \approx \log _{2} \mathrm{n}
$$

and

$$
\mathrm{E}_{\mathrm{n}}\left[\alpha 2^{\mathrm{R}}\right]=\mathrm{n}+\mathrm{o}(\mathrm{n})
$$

for
$\alpha^{-1}=\frac{e^{\gamma} \sqrt{2}}{3} \prod_{k \geqslant 1}\left(\frac{(4 k+1)(2 k+1)}{2 k(4 k+3)}\right)^{(-1)^{v(k)}} \approx 0.77351 \ldots$

Other estimators

- Based on bit patterns
- LogLog: Durand, Flajolet (2003)
- HyperLogLog: Flajolet, Fusy, Gandouet, Meunier (2007)
- Based on order statistics (e.g., the kth smallest in the set of distinct hash values)
- Bar-Yossef, Kumar \& Sivakumar (2002)
- Bar-Yossef, Jayram, Kumar, Sivakumar \& Trevisan (2002)
- Giroire $(2005,2009)$
- Chassaing \& Gérin (2006)
- Lumbroso (2010)

Our estimator: Recordinality

- Recordinality counts the number of records (local maxima) in the sequence

- It depends in the underlying permutation of the first occurrences of distinct values, very different from the other estimators

Our estimator: Recordinality

- $\sigma(i)$ is a record of the permutation σ if $\sigma(i)>\sigma(j)$ for all $j<i$
- It is well known that the number r of records satisfies

$$
E_{n}[r]=\log n+\mathcal{O}(1)
$$

hence we anticipate that e^{r} should give us an estimate of n

- The notion is generalized to k-records: $\sigma(i)$ is a k-record if $\sigma(i)$ is among the k largest elements in $\sigma(1), \ldots, \sigma(i)$

Our estimator: Recordinality

procedure RECORDINALITY(S, k)

fill T with the first k distinct elements (hash values)
of the stream \mathcal{S}
$r \leftarrow k$
for all $s \in S$ do
$x \leftarrow \operatorname{hash}(s)$
if $x>\min (T) \wedge x \notin T$ then $\mathrm{r} \leftarrow \mathrm{r}+1 ; \mathrm{T} \leftarrow \mathrm{T} \cup\{x\} \backslash \min (\mathrm{T})$
end if
end for
return $Z=\alpha_{k} \cdot e^{r} \triangleright \alpha_{k}$ is a correcting factor end procedure

Memory: k hash values ($k \log n$ bits) +1 counter ($\log \log n$ bits)

Our estimator: Recordinality

Theorem (Helmi, Martínez and Panholzer, 2012)

Let r_{k} denote the number of k-records in a permutation of size n . The exact distribution of r_{k} is

$$
\operatorname{Prob}_{n}\left\{r_{k}=j\right\}= \begin{cases}\llbracket n=j \rrbracket & \text { if } k>n, \\
k^{j-k} \frac{k!}{n!}\left[\begin{array}{l}
n-k+1 \\
j-k+1
\end{array}\right] & \text { if } k \leqslant j \leqslant n\end{cases}
$$

$\left[\begin{array}{l}n \\ j\end{array}\right]=$ signless Stirling numbers of the first kind; $\mathbb{P} \rrbracket=1$ if P true, $=0$ otherwise

Our estimator: Recordinality

- The expected value of r_{k} is $k \log (n / k)+$ l.o.t.; it is reasonable then to assume that for

$$
Z:=k \exp \left(\alpha_{k} \cdot r_{k}\right)
$$

we should have $\mathrm{E}_{\mathrm{n}}[\mathrm{Z}] \sim \mathrm{n}$ for some suitable correcting factor α_{k}

- We can use the formula for $\operatorname{Prob}_{n}\left\{r_{k}=j\right\}$ to explictly compute $\mathrm{E}_{\mathrm{n}}[\mathrm{Z}]$ and to determine ϕ, and then compute the standard error

Our estimator: Recordinality

Theorem
The Recordinality estimator

$$
Z:=k\left(1+\frac{1}{k}\right)^{r_{k}-k+1}-1
$$

is an unbiased estimator of n : $E_{n}[Z]=n$.

Our estimator: Recordinality

Theorem

The accuracy of RECORDINALITY, expressed in terms of standard error, asymptotically satisfies

$$
S E_{\mathrm{n}}[Z] \sim \sqrt{\left(\frac{n}{\mathrm{ke}}\right)^{\frac{1}{k}}-1}
$$

Our estimator: Recordinality

For practical values of n, even for small k, the estimates may be significantly concentrated.
For instance, for $k=10$, the estimates are within $\sigma, 2 \sigma, 3 \sigma$ of the exact count in respectively $91 \%, 96 \%$ and 99% of all cases.

$k=256$

500 estimates of cardinality in Shakespare's A Midsummer Night's Dream; top and bottom lines (5\%), centermost lines (70\%); gray area (1 standard deviation)

Other issues

Original texts

Randomly permuted texts

- Recordinality does not depend on the hash values, only the relative ordering \Rightarrow we can avoid using the hash function, provided the distinct elements appear (for the first time) in random order
- We can combine Recordinality with any of the exisiting estimators since they are independent; a suitably weighted sum of the estimations will have less variance \Rightarrow better accuracy

Other issues

- The table of k largest hash values gives us a random sample of k distinct elements out of the $n \Rightarrow$ distinct sampling for free
- Indeed, distinct elements "enter" the table or not according to their hash value, a random uniform number
- An easy modification allows us to have a random sample of distinct elements with expected size $k \log (n / k) \Rightarrow$ variable-size sampling

Concluding remarks

- First (?) application of combinatorics of random permutations to data stream algorithms
- Simple and elegant algorithms
- Nice combinatorics and mathematical analysis
- Many extensions to explore: sampling, sliding windows, similarity index,

