Classification of 3-SEminets with at MOST 5 POINTS.

R. M. Falcón

Department of Applied Mathematics I
University of Seville (Spain)
rafalgan@us.es

VIII JMDA
Almería, $11^{\text {th }}$ to $13^{\text {th }}$ July 2012

VIII JMDA, Almería 2012

Nets.

$\mathfrak{P} \equiv$ Finite set of points.
$\mathfrak{L} \equiv$ Subsets (lines) of \mathfrak{P} s.t. \exists partition of \mathfrak{L} into $k \geq 3$ parallel classes:

$$
L_{1}, \ldots, L_{k} .
$$

$\left(\mathfrak{P}, L_{1}, \ldots, L_{k}\right)$ is a k-net [Bruck, 1963] if:

- Any two lines of different classes intersect in exactly one point.
- Every point belongs to exactly one line of each class.

Nets.

$\mathfrak{P} \equiv$ Finite set of points.
$\mathfrak{L} \equiv$ Subsets (lines) of \mathfrak{P} s.t. \exists partition of \mathfrak{L} into $k \geq 3$ parallel classes:

$$
L_{1}, \ldots, L_{k}
$$

\equiv| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 4 | 1 | 3 |
| 3 | 1 | 4 | 2 |
| 4 | 3 | 2 | 1 |

- All parallel classes have the same number of lines.
- Every line contains the same number of points (order).
- Two k-nets are isomorphic if there exists a bijection between their sets of points which preserves collinearity in each parallel class.
- Any 3 -net of order n is uniquely identified with a Latin square of the same order.

Classification of Latin Squares.

- Orthogonal representation: $O(P)=\{($ row, column, symbol $)\}$.
- Classification:

1. Isotopism: Permutations of rows, columns and symbols.
2. Parastrophism:
$\pi \in S_{3} \rightarrow O\left(P^{\pi}\right)=\left\{\left(I_{\pi(1)}, I_{\pi(2)}, I_{\pi(3)}\right) \mid\left(I_{1}, l_{2}, l_{3}\right) \in O(P)\right\}$.
3. Paratopism (main classes): Composition of isotopism and parastrophism.

- Isotopic LS \equiv Isomorphic 3-nets.
- Paratopic LS \equiv Isomorphic 3-nets after relabeling parallel classes.

n	$\left\|L S_{n}\right\|$	$I C$	$M C$
1	1	1	1
2	2	1	1
3	12	1	1
4	161280	2	2
5	812851200	2	12
6	61479419904000	22	147
7	108776032459082956800	1676264	283657
8	5524751496156892842531225600	115618721533	19270853541
9	9982437658213039871725064756920320000	208904371354363006	34817397894749939
10	77696686171770144107444346734230682311065600000	12216177315369229261482540	2036029552582883134196099
11	[McKay and Wanless, 2005; Hulpke et al., 2011]		

Seminets.

$\mathfrak{P} \equiv$ Finite set of points.
$\mathfrak{L} \equiv$ Subsets (lines) of \mathfrak{P} s.t. \exists partition of \mathfrak{L} into $k \geq 3$ parallel classes:

$$
L_{1}, \ldots, L_{k} .
$$

$\left(\mathfrak{P}, L_{1}, \ldots, L_{k}\right)$ is a k-seminet [Ušan, 1977] if:

- Any two lines of different classes intersect in at most one point.
- Every point belongs to exactly one line of each class.

Seminets.

$\mathfrak{P} \equiv$ Finite set of points.
$\mathfrak{L} \equiv$ Subsets (lines) of \mathfrak{P} s.t. \exists partition of \mathfrak{L} into $k \geq 3$ parallel classes:

$$
L_{1}, \ldots, L_{k}
$$

- Parallel classes can have different number of lines: r, s and n.
- Lines can contain different number of points.
- It can contain skew lines: Non-parallel lines without common points.
- Any 3 -seminet with parallel classes of r, s and n lines can be uniquely identified with an $r \times s$ partial Latin rectangle based on n symbols.

Partial Latin Rectangles.

- An $r \times s$ partial Latin rectangle based on a set of n symbols is an $r \times s$ array in which each cell is either empty or contains one element chosen from a set of symbols, $[n]=\{1,2, \ldots, n\}$, s.t. each symbol occurs at most once in each row and in each column.
- The number of filled cells is its size. Their positions determine the shape:
$P=\left(\begin{array}{ccccc}1 & \cdot & 3 & 4 & 6 \\ 2 & \cdot & 5 & \cdot & 4 \\ \cdot & \cdot & 4 & 5 & 1 \\ \cdot & \cdot & 2 & \cdot & 3\end{array}\right) \in \mathcal{P L R}_{4 \times 5,12}^{6} \rightarrow \operatorname{Sh}(P)=\left(\begin{array}{ccccc}1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1\end{array}\right)$
- $r=s=n \rightarrow$ Partial Latin square.
- Size $r \cdot s \rightarrow$ Latin rectangle (square if $r=s$).
- Applications: Algebra (quasigroups), Experimental Designs, Cryptography.

Partial Latin Rectangles.

$\left|P L R_{r \times s}^{n}\right|$ upper bounded for $r=s=n$ [Ghandehari, 2005].
$|I C|$ and $|M C|$ lower bounded for $r=s=n \leq 6$ [Adams, 2003].

Order n	Size m	$\left\|P L S_{n, m}\right\|$
1	1	1
2	1	8
	2	16
	3	8
	4	2
3	1	27
	2	270
	3	1,278
	4	3,078
	5	3,834
	6	2,412
	7	756
	8	108
	9	12
	1	64
	2	1,728
	3	25,920
	4	239,760
	5	$1,437,696$
	6	$5,728,896$
	7	$15,326,208$
	8	$27,534,816$
	9	$32,971,008$
	10	$25,941,504$
	11	$13,153,536$
	12	$4,215,744$
	13	847,872
	14	110,592
	15	9,216
	16	576

Some exact values have recently been obtained by applying Gröbner bases in an equivalent planar assignment problem:

$$
\left\{\begin{array}{l}
\sum_{k \in[n]} x_{i j k} \leq 1, \forall i, j \in[n], \\
\sum_{j \in[n]} x_{i j k} \leq 1, \forall i, k \in[n], \\
\sum_{i \in[n]} x_{i j k} \leq 1, \forall j, k \in[n], \\
\sum_{i, j, k \in[n]} x_{i j k}=m, \\
x_{i j k} \in\{0,1\}, \forall i, j, k \in[n],
\end{array}\right.
$$

Partial Latin Rectangles.

$\left|P L R_{r \times s}^{n}\right|$ upper bounded for $r=s=n$ [Ghandehari, 2005].
$|I C|$ and $|M C|$ lower bounded for $r=s=n \leq 6$ [Adams, 2003].

Order n	Size m	$\left\|P L S_{n, m}\right\|$
1	1	1
2	1	8
	2	16
	3	8
3	4	2
	1	27
	2	270
	3	1,278
	4	3,078
	5	3,834
	6	2,412
	7	756
	8	108
	9	12
	1	64
	2	1,728
	3	25,920
	4	239,760
	5	$1,437,696$
	6	$5,728,896$
	7	$15,326,208$
	8	$27,534,816$
	9	$32,971,008$
	10	$25,941,504$
	11	$13,153,536$
	12	$4,215,744$
	13	847,872
	14	110,592
	15	9,216
16	576	

Some exact values have recently been obtained by applying Gröbner bases in an equivalent planar assignment problem:

$$
\left\{\begin{array}{l}
\sum_{k \in[n]} x_{i j k} \leq 1, \forall i, j \in[n], \\
\sum_{j \in[n]} x_{i j k} \leq 1, \forall i, k \in[n], \\
\sum_{i \in[n]} x_{i j k} \leq 1, \forall j, k \in[n], \\
\sum_{i, j, k \in[n]} x_{i j k}=m,(\text { excessive length }) \leftarrow \text { Size } \\
x_{i j k} \in\{0,1\}, \forall i, j, k \in[n],
\end{array}\right.
$$

Type and structure of a PLR.

$$
\begin{aligned}
& \sum_{i, j, k \in[n]} x_{i j k}=m \rightarrow\left\{\begin{array}{l}
\sum_{j, k \in[n]} x_{i j k}=T_{1}(P, i), \leftarrow \text { Rows. } \\
\sum_{i, k \in[n]} x_{i j k}=T_{2}(P, j), \leftarrow \text { Columns. } \\
\sum_{i, j \in[n]} x_{i j k}=T_{3}(P, k), \leftarrow \text { Symbols. }
\end{array}\right. \\
& P=\left(\begin{array}{lllll}
1 & \cdot & 3 & 4 & 6 \\
2 & \cdot & 5 & \cdot & 4 \\
. & \cdot & 4 & 5 & 1 \\
\cdot & \cdot & 2 & . & 3
\end{array}\right) \in \operatorname{PLR}_{4 \times 5,12}^{6} \rightarrow \operatorname{Sh}(P)=\left(\begin{array}{lllllll}
& 2 & 0 & 4 & 2 & 4 \\
\hline & 1 & 0 & 1 & 1 & 1 \\
3 & 1 & 0 & 1 & 0 & 1 \\
3 & 0 & 0 & 1 & 1 & 1 \\
2 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\text { Row type: } T_{1}(P)=(4,3,3,2)
$$

Column type: $T_{2}(P)=(2,0,4,2,4)$.
Symbol type: $T_{3}(P)=(2,2,2,3,2,1)$.

Type and structure of a PLR.

- $\mathcal{T}_{l, w}=\left\{\left(t_{1}, \ldots, t_{l}\right)\right.$ of weight $\sum_{i \in[1]} t_{i}=w$, s.t. $\left.t_{i} \in \mathbb{N}\right\}$.
- Structure of $T \in \mathcal{T}_{1, w}: \operatorname{st}(T)=w^{\lambda_{w}^{T}} \ldots 1^{\lambda_{1}^{T}}$, where λ_{i}^{T} is the number of occurrences of i in T.
- $\mathcal{Z}_{l, w}$: Set of possible structures of length $/$ and weight w.

$$
P=\left(\begin{array}{ccccc}
1 & \cdot & 3 & 4 & 6 \\
2 & \cdot & 5 & \cdot & 4 \\
. & \cdot & 4 & 5 & 1 \\
. & \cdot & 2 & \cdot & 3
\end{array}\right) \in \mathcal{P L R}_{4 \times 5,12}^{6} \rightarrow \operatorname{Sh}(P)=\left(\begin{array}{c|ccccc}
& 2 & 0 & 4 & 2 & 4 \\
\hline 4 & 1 & 0 & 1 & 1 & 1 \\
3 & 1 & 0 & 1 & 0 & 1 \\
3 & 0 & 0 & 1 & 1 & 1 \\
2 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Row type: $T_{1}(P)=(4,3,3,2) \rightarrow \operatorname{st}\left(T_{1}(P)\right)=43^{2} 2$.
Column type: $T_{2}(P)=(2,0,4,2,4) \rightarrow \operatorname{st}\left(T_{2}(P)\right)=4^{2} 2^{2}$.
Symbol type: $T_{3}(P)=(2,2,2,3,2,1) \rightarrow \operatorname{st}\left(T_{3}(P)\right)=32^{4} 1$.

Type and structure of a PLR.

- Given $R \in \mathcal{T}_{r, w}, C \in \mathcal{T}_{s, w}$ and $S \in \mathcal{T}_{n, w}$:

$$
\begin{gathered}
\mathcal{P L R}_{(R, C)}^{n}=\left\{P \in \mathcal{P} \mathcal{L R}_{r \times s}^{n}: T_{1}(P)=R \text { and } T_{2}(P)=C\right\} . \\
\mathcal{P L R}_{(R, C, S)}=\left\{P \in \mathcal{P} \mathcal{L R}_{r \times s}^{n}: T_{1}(P)=R, T_{2}(P)=C \text { and } T_{3}(P)=S\right\} .
\end{gathered}
$$

Lemma
$\left|\mathcal{P L} \mathcal{R}_{(R, C)}^{n}\right|$ and $\left|\mathcal{P L} \mathcal{R}_{(R, C, S)}\right|$ only depend on the structures of R, C, S.

Type and structure of a PLR.

- Given $R \in \mathcal{T}_{r, w}, C \in \mathcal{T}_{s, w}$ and $S \in \mathcal{T}_{n, w}$:

$$
\begin{gathered}
\mathcal{P L} \mathcal{R}_{(R, C)}^{n}=\left\{P \in \mathcal{P} \mathcal{L R}_{r \times s}^{n}: T_{1}(P)=R \text { and } T_{2}(P)=C\right\} . \\
\mathcal{P L R}_{(R, C, S)}=\left\{P \in \mathcal{P} \mathcal{L R}_{r \times s}^{n}: T_{1}(P)=R, T_{2}(P)=C \text { and } T_{3}(P)=S\right\} .
\end{gathered}
$$

Lemma

$\left|\mathcal{P} \mathcal{L} \mathcal{R}_{(R, C)}^{n}\right|$ and $\left|\mathcal{P} \mathcal{L} \mathcal{R}_{(R, C, S)}\right|$ only depend on the structures of R, C, S.

- Given $z_{1} \in \mathcal{Z}_{1, w}, z_{2} \in \mathcal{Z}_{12, w}$ and $z_{3} \in \mathcal{Z}_{13, w}$:

$$
\Delta_{r \times s}^{n}\left(z_{1}, z_{2}\right)=\left|\mathcal{P} \mathcal{L} \mathcal{R}_{(R, C)}^{n}\right|, \forall R \in \mathcal{T}_{r, w}, C \in \mathcal{T}_{s, w}, \text { s.t. } \operatorname{st}(R)=z_{1}, \operatorname{st}(C)=z_{2}
$$

$$
\Delta_{r \times s}^{n}\left(z_{1}, z_{2}, z_{3}\right)=\left|\mathcal{P} \mathcal{L} \mathcal{R}_{(R, C, S)}^{n}\right|, \forall R \in \mathcal{T}_{r, w}, C \in \mathcal{T}_{s, w}, S \in \mathcal{T}_{n, w} \text {, s.t. } \operatorname{st}(R)=z_{1},
$$

$$
\operatorname{st}(C)=z_{2}, \operatorname{st}(S)=z_{3}
$$

Type and structure of a PLR.

Proposition

$\left|\mathcal{P L R}_{r \times s}^{n}\right|=\sum_{\left(l, r^{\prime}\right) \in[r] \times[s]} \sum_{w \in[\cdot / \cdot s]\left(z, z^{\prime}\right) \in \mathcal{Z}_{1, w \times}} \sum_{\mathcal{Z}_{\prime}^{\prime \prime}, w} \frac{r!}{(r-l)!\cdot \prod_{i \in[w]} \lambda_{i}!} \cdot \Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$
Where:

$$
\Delta_{l \times s}^{n}\left(z, z^{\prime}\right)=\sum_{l^{\prime \prime} \in[n]} \sum_{z^{\prime \prime} \in \mathcal{Z}_{l^{\prime \prime}, w}} \Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right)
$$

Type and structure of a PLR.

Proposition
$\left|\mathcal{P L R}_{r \times s}^{n}\right|=\sum_{\left(l, r^{\prime}\right) \in[r] \times[s]} \sum_{w \in[1 \cdot s]} \sum_{\left(z, z^{\prime}\right) \in \mathcal{Z}_{1, w} \times \mathcal{Z}_{\prime^{\prime}, w}} \frac{r!}{(r-l)!\cdot \prod_{i \in[w]} \lambda_{i}!} \cdot \Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$
Where:

$$
\Delta_{l \times s}^{n}\left(z, z^{\prime}\right)=\sum_{\left.l^{\prime \prime} \in[n]\right]^{\prime \prime} \in z_{\prime^{\prime \prime}, w}} \Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right) .
$$

Problem

How to obtain $\Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$ and $\Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right)$?

Type and structure of a PLR.

Proposition
$\left|\mathcal{P L R}_{r \times s}^{n}\right|=\sum_{\left(l, r^{\prime}\right) \in[r] \times[s]} \sum_{w \in[1 \cdot s]} \sum_{\left(z, z^{\prime}\right) \in \mathcal{Z}_{1, w} \times \mathcal{Z}_{\prime^{\prime}, w}} \frac{r!}{(r-l)!\cdot \prod_{i \in[w]} \lambda_{i}!} \cdot \Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$
Where:

$$
\Delta_{l \times s}^{n}\left(z, z^{\prime}\right)=\sum_{\left.l^{\prime \prime} \in[n]\right]^{\prime \prime} \in z_{\prime^{\prime \prime}, w}} \Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right) .
$$

Problem

How to obtain $\Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$ and $\Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right)$?
$\Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$.

$$
P=\left(\begin{array}{lllll}
1 & \cdot & 3 & 4 & 6 \\
2 & \cdot & 5 & \cdot & 4 \\
\cdot & \cdot & 4 & 5 & 1 \\
\cdot & \cdot & 2 & \cdot & 3
\end{array}\right) \in \mathcal{P} \mathcal{L} \mathcal{R}_{4}^{6} \times 5,12 \rightarrow \operatorname{Sh}(P)=\left(\begin{array}{llllll}
& 2 & 0 & 4 & 2 & 4 \\
\hline 4 & 1 & 0 & 1 & 1 & 1 \\
3 & 1 & 0 & 1 & 0 & 1 \\
3 & 0 & 0 & 1 & 1 & 1 \\
2 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

$$
\left|\mathcal{P} \mathcal{L R}_{(R, C)}^{n}\right| \rightarrow \mathfrak{A}(R, C)
$$

- $\mathfrak{A}(R, C):(0,1)$-matrices having R and C as row and column sum vectors.
- $\mathcal{P} \mathcal{L} R_{M}^{n}$: Set of PLR of n symbols having $M \in \mathfrak{A}(R, C)$ as shape.

$$
\left|\mathcal{P} \mathcal{L} \mathcal{R}_{(R, C)}^{n}\right|=\sum_{M \in \mathfrak{A}_{(R, C)}}\left|\mathcal{P} \mathcal{L} \mathcal{R}_{M}^{n}\right| .
$$

Equivalent problems:

- n-edge-colouring a bipartite graph of incidence matrix $\operatorname{Sh}(P)$ (Existence problem is NP-complete even for $n=3$ [Holyer, 1981]).
- 1-color tomography problem [Kuba, 1999]: Reconstructing a binary matrix starting from its row and column sums.

$\Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$.

Gale-Ryser theorem [Gale, Ryser, 1957]: $\mathfrak{A}(R, C) \neq \emptyset \Leftrightarrow C \preceq R^{*}$. $R=(3,5,2,2) \rightarrow R^{*}=(4,4,2,1,1) \succeq(3,3,3,2,1) . \quad$ (Dominance order).

Formulas and algorithms:

- Monomial symmetric functions [Sukhatme, 1938; David, 1951 (≤ 12)].
- Character of the symmetric group [Snapper, 1971].
- Lower bound [Wei, 1982].
- Recurrence formulas [Wang, 1988; Wang and Zhang, 1998; Pérez Salvador, 2002].
- General formulas [Dias, 2002].
- Asymptotic methods [Barvinok, 2010].
- Combinatorial methods [Brualdi, 1980; Brualdi, 2006; Fonseca, 2009].
- Simulation methods (social networks, ecology) [Snijders, 1991; Rao, 1996; Chen, 2005; Bezakova, 2007; Blanchet, 2009].
$\Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$.

Algebraic approach: Gröbner bases of boolean ideals for counting problems [Bayer, 1982; Alon, 1995; Bernasconi, 1997].

Theorem
$R=\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{r}\right) \in \mathcal{T}_{r, w}$ and $C=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{s}\right) \in \mathcal{T}_{s, w}$ s.t. $C \preceq R^{*}$.
$\mathfrak{A}(R, C)=V(I)$, where:

$$
\begin{aligned}
I & =\left\langle\left(\sum_{j \in[s]} x_{i j}-\mathrm{r}_{i}\right): i \in[r]\right\rangle+\left\langle\left(\sum_{i \in[r]} x_{i j}-\mathrm{c}_{j}\right): j \in[s]\right\rangle \\
& +\left\langle x_{i j} \cdot\left(1-x_{i j}\right): i \in[r], j \in[s]\right\rangle \subseteq \mathbb{Q}\left[x_{11}, \ldots, x_{r s}\right] .
\end{aligned}
$$

Moreover, $|\mathfrak{A}(R, C)|=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[x_{11}, \ldots, x_{r s}\right] / I\right)$.

Type and structure of a PLR.

Proposition
$\left|\mathcal{P L R}_{r \times s}^{n}\right|=\sum_{\left(l, r^{\prime}\right) \in[r] \times[s]} \sum_{w \in[1 \cdot s]} \sum_{\left(z, z^{\prime}\right) \in \mathcal{Z}_{1, w} \times \mathcal{Z}_{\prime^{\prime}, w}} \frac{r!}{(r-l)!\cdot \prod_{i \in[w]} \lambda_{i}!} \cdot \Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$
Where:

$$
\Delta_{l \times s}^{n}\left(z, z^{\prime}\right)=\sum_{\left.l^{\prime \prime} \in[n]\right]^{\prime \prime} \in z_{\prime^{\prime \prime}, w}} \Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right) .
$$

Problem

How to obtain $\Delta_{r \times s}^{n}\left(z, z^{\prime}\right)$ and $\Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right)$?
$\Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right)$.
Theorem
$R=\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{r}}\right) \in \mathcal{T}_{r, w}, C=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{s}\right) \in \mathcal{T}_{\mathrm{s}, \mathrm{w}}$ and $S=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}\right) \in \mathcal{T}_{n, w}$.
$\mathcal{P L R}_{(R, C, S)}=V(I)$, where:

$$
\begin{aligned}
& I=\left\langle\left(\sum_{i \in[r]} x_{j k}\right) \cdot\left(1-\sum_{i \in[r]} x_{j k}\right): j \in[s], k \in[n]\right\rangle+\left\langle r_{i}-\sum_{j \in[s], k \in[r]} x_{j j}: i \in[r]\right\rangle+ \\
& \left\langle\left(\sum_{j \in[s]} x_{j k}\right) \cdot\left(1-\sum_{j \in[s]} x_{j k}\right): i \in[r], k \in[n]\right\rangle+\left\langle c_{j}-\sum_{i \in[l], k \in[n]} x_{j k}: j \in[s]\right\rangle+ \\
& \left\langle\left(\sum_{k \in[n]} x_{j k}\right) \cdot\left(1-\sum_{k \in[n]} x_{j k}\right): i \in[r], j \in[s]\right\rangle+\left\langle s_{k}-\sum_{i \in[\mid], j \in[s]} x_{i j k}: k \in[n]\right\rangle+ \\
& \left\langle x_{j k} \cdot\left(1-x_{j k}\right): i \in[r], j \in[s], k \in[n]\right\rangle \subseteq \mathbb{Q}\left[x_{111}, \ldots, x_{s s]}\right] .
\end{aligned}
$$

Moreover, $\left|\mathcal{P} \mathcal{L R}_{(R, C, S)}\right|=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[x_{111}, \ldots, x_{\text {rsn }}\right] / I\right)$.

$\Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right)$.

Theorem

$R=\left(\mathrm{r}_{1}, \ldots, \mathrm{r}_{r}\right) \in \mathcal{T}_{r, w}, C=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{s}\right) \in \mathcal{T}_{s, w}$ and $S=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}\right) \in \mathcal{T}_{n, w}$.
Two PLR $P=\left(p_{r c}\right), Q=\left(q_{r c}\right) \in \mathcal{P} \mathcal{L} \mathcal{R}_{(R, C, S)}$ are isotopic if the following system has solution:

$$
\left\{\begin{array}{l}
\sum_{j \in[r]} x_{i j}=1, \forall i \in[r], \\
\sum_{j \in[s]} y_{i j}=1, \forall i \in[s], \\
\sum_{j \in[n]} z_{i j}=1, \forall i \in[n], \\
\sum_{i \in[r]} x_{i j}=1, \forall j \in[r], \\
\sum_{i \in[s]} y_{i j}=1, \forall j \in[s], \\
\sum_{i \in[n]} z_{i j}=1, \forall j \in[n], \\
x_{i k} \cdot y_{j l} \cdot\left(z_{p i j} q_{k l}-1\right)=0, \forall i, j \in[r] \text { and } k, l \in[s] \text { s.t. } p_{i j}, q_{k l} \in[n], \\
x_{i k} \cdot y_{j l}=0, \forall i, j \in[r] \text { and } k, l \in[s] \text { s.t. } q_{k l}=\emptyset,
\end{array}\right.
$$

$\Delta_{r \times s}^{n}\left(z, z^{\prime}, z^{\prime \prime}\right)$.

$Z=\left(z_{1}, z_{2}, z_{3}\right)$					
z_{1}	z_{2}	z_{3}	$\Delta(Z)$	$\Delta_{I}(Z)$	$\Delta_{P}(Z)$
1	1	1	1	1	1
2	1^{2}	1^{2}	2	1	1
1^{2}	1^{2}	1^{2}	4	1	1
3	1^{3}	1^{3}	6	1	1
21	21	21	1	1	1
		1^{3}	6	1	1
	1^{3}	1^{3}	18	1	1
1^{3}	1^{3}	1^{3}	36	1	1
4	1^{4}	1^{4}	24	1	1
31	21^{2}	21^{2}	4	1	1
		1^{4}	24	1	1
	1^{4}	1^{4}	96	1	1
2^{2}	2^{2}	2^{2}	2	1	1
		21^{2}	4	1	1
		1^{4}	24	1	1
	21^{2}	21^{2}	12	2	2
		1^{4}	48	1	1
	1^{4}	1^{4}	144	1	1
21^{2}	21^{2}	21^{2}	40	5	3
		1^{4}	120	2	2
	1^{4}	1^{4}	288	1	1
1^{4}	1^{4}	1^{4}	576	1	1
5	1^{5}	1^{5}	120	1	1
41	21^{3}	21^{3}	18	1	1
		1^{5}	120	1	1
	1^{5}	1^{5}	600	1	1

3-SEMINETS.

Theorem

The number of isomorphism classes of 3-seminets with one, two, three, four and five points are 1, 4, 11, 52 and 220, respectively. That of paratopism classes are $1,2,5,18$ and 59 , respectively.

34 of the 85 3-seminets are uniquely determined by the PLR's structures.

The rest are not uniquely determined:

SEminets-GRAPhs.

Seminet-graph (G_{1}):

- Vertices \equiv points.
- Connected vertices \equiv collinear points.
- Lines containing only one point are identified with loops.
- It can be related to more than one paratopism class.

SEminets-GRAPhS.

Seminet-graph (G_{2}):

- Vertices \equiv Points, lines and parallel classes.

$$
\left\{u_{1}, \ldots, u_{n}\right\} \cup\left\{v_{1,1}, \ldots, v_{1, l_{1}}, v_{2,1}, \ldots, v_{3, l_{3}}\right\} \cup\left\{w_{1}, w_{2}, w_{3}\right\} .
$$

- Each vertex w_{i} is connected to all the vertices $v_{i, j}$, for all $i \in[3]$ and $j \in\left[I_{i}\right]$.
- each vertex $v_{i, j}$ is connected to those vertices u_{k} such that the line related to the former contains the point associated to the latter.
- Uniquely related to a paratopism class.
- If G_{2} is not acyclic, then its girth is 6 .

SEminets-GRAPhS.

We have considered:

- $\mathfrak{l} \equiv$ Number of vertices of $G_{1}(S)$ contained in at least one loop.
- $\mathfrak{a} \equiv$ Number of articulation points of $G_{1}(S)$.
- $\mathfrak{t} \equiv$ Number of transversal of $G_{1}(S)$.
- $\mathfrak{c} \equiv$ Clustering coefficient of $G_{1}(S)$.
- $\mathfrak{s t}_{1} \equiv$ Number of spanning trees in $G_{1}(S)$.
- $\mathfrak{s t}_{2} \equiv$ Number of spanning trees in $G_{2}(S)$.

Bibliography.

- P. Adams, R. Bean and A. Khodkar. A census of critical sets in the Latin squares of order at most six. Ars Combinatoria, 68: 203-223, 2003.
- N. Alon, Combinatorial Nullstellensatz, Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999), no. 1-2, 7-29.
- A. Barvinok, On the number of matrices and a random matrix with prescribed row and column sums and $0-1$ entries, Adv. Math. 224 (2010), no. 1, 316-339.
- D. A. Bayer, The division algorithm and the Hilbert scheme. PhD thesis, Harvard University, 1982.
- R. Bean, D. Donovan, A. Khodkar and A. Penfold Street, Steiner trades that give rise to completely decomposable Latin interchanges, Int. J. Comput. Math. 79 (2002), no. 12, 1273-1284.
- A. Bernasconi, B. Codenotti, V. Crespi and G. Resta, Computing Groebner Bases in the Boolean Setting with Applications to Counting, 1st Workshop on Algorithm Engineering (WAE). Venice, Italy, 1997, pp. 209-218.
- I. Bezáková, N. Bhatnagar and E. Vigoda, Sampling binary contingency tables with a greedy start, Random Structures Algorithms 30 (2007), no. 1-2, 168-205.
- J. H. Blanchet, Efficient importance sampling for binary contingency tables, Ann. Appl. Probab. 19 (2009), no. 3, 949-982.
- R. A. Brualdi, Matrices of zeros and ones with fixed row and column sum vectors, Linear Algebra Appl. 33 (1980), 159-231.
- R. A. Brualdi, Algorithms for constructing (0,1)-matrices with prescribed row and column sum vectors, Discrete Math. 306 (2006), no. 23, 3054-3062.
- R. H. Bruck. Finite nets II. Uniqueness and imbedding. Pacific J. Math., 93: 421-457, 1963.
- Y. Chen, P. Diaconis, S. Holmes and J. S. Liu, Sequential Monte Carlo methods for statistical analysis of tables, J. Amer. Statist. Assoc. 100 (2005), no. 469, 109-120.
- D. A. Cox, J. B. Little and D. O'Shea. Using Algebraic Geometry. Springer-Verlag, New York, 1998.

Bibliography.

- F. N. David and M. G. Kendall, Tables of Symmetric Functions. Parts II and III, Biometrika 38 (1951), no. 3-4, 435-462.
- W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. Singular 3-1-4. A computer algebra system for polynomial computations, 2012. Available from http://www.singular.uni-kl.de.
- J. Dénes and A. D. Keedwell. Latin squares and their applications. Academic Press, New York-London, 1974.
- J.A. Dias da Silva and H. Godinho, Generalized Derivations and Additive Theory, Linear Algebra and its Applications 342 (2002), 1-15.
- R. M. Falcón. Clasificación de cuadrados latinos parciales de orden menor o igual a 4. Avances en Matemática Discreta en Andalucía, (2): 5-12, 2011.
- C. M. da Fonseca and R. Mamede, On (0,1)-matrices with prescribed row and column sum vectors, Discrete Math. 309 (2009), no. 8, 2519-2527.
- M. Ghandehari, H. Hatami and E. S. Mahmoodian, On the size of the minimum critical set of a Latin square, Discrete Math. 293 (2005), no. 1-3, 121-127.
- I. Holyer, The NP-completeness of edge-colouring, SIAM J Comput 2 (1981), 225-231.
- A. Hulpke, P. Kaski and P. R. J. Östergård. The number of Latin squares of order 11. Math. Comp., 80 (274): 1197-1219, 2011.
- A. D. Keedwell, Critical sets and critical partial Latin squares. Combinatorics, graph theory, algorithms and applications (Beijing, 1993), World Sci. Publ., River Edge, NJ, 1994, 111-123.
- A. Kuba and G.T. Herman, Discrete tomography: a historical overview, in: G.T. Herman, A. Kuba (Eds.), Discrete Tomography: Foundations, Algorithms and Applications, Birkhäuser, Boston, MA, 1999, pp. 3-34.
- B. D. McKay and I. M. Wanless. On the number of Latin squares. Ann. Comb., 9 (3): 335-344, 2005.
- A. R. Rao, R. Jana and S. Bandyopadhyay, A Markov chain Monte Carlo method for generating random (0,1)-matrices with given marginals, Sankhya- Ser. A 58 (1996), no. 2, 225-242.

Bibliography.

- E. Snapper, Group characters and nonnegative integral matrices, J. Algebra 19 (1971), 520-535.
- T. A. B. Snijders, Enumeration and simulation methods for $0-1$ matrices with given marginals, Psychometrika 56 (1991), no. 3, 397-417.
- P. V. Sukhatme, On bipartitional functions, Philos. Trans. Roy. Soc. London. Ser. A. vol. 237 (1938), 375-409.
- J. Ušan. k-seminets. Mat. Bilten, 27 (1): 41-46, 1977.
\downarrow W.D. Wei, The class $\mathfrak{A}(R, S)$ of $(0,1)$-matrices, Discrete Math. 39 (1982), no. 3, 301-305.
- B.Y. Wang, Precise number of $(0,1)$-matrices in $\mathfrak{A}(R, S)$, Sci. sinica Ser. A 1 (1988) 1-6.
- B.Y. Wang, and F. Zhang, On the precise number of $(0,1)$-matrices in $\mathfrak{A}(R, S)$, Discrete Math. 187 (1998), no. 1-3, 211-220.

CLASSIFICATION OF 3-SEMINETS WITH AT MOST 5 POINTS.

R. M. Falcón
Department of Applied Mathematics I
University of Seville (Spain)
rafalgan@us.es
VIII JMDA
Almería, $11^{\text {th }}$ to $13^{\text {th }}$ July 2012

Thank you for your attention!!

