Computing the Minimum Hamming Distance for $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

Marta Pujol and Mercè Villanueva

Combinatorics, Coding and Security Group (CCSG) Universitat Autònoma de Barcelona (UAB) VIII JMDA, Almería

11-13 July 2012

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction

Binary Nonlinear Codes

- Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes
- $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

3 Minimum Distance of $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes

Tests and Results

Conclusions and Future Work

< ≣ > <

Introduction

Binary Nonlinear Codes Minimum Distance of Z₂Z₄-linear codes Tests and Results Conclusions and Future Work Bibliography

Error-correcting code

Examples:

 $\begin{array}{ccc} \text{Linear code} \\ 00 & \longrightarrow & 00000 \\ 01 & \longrightarrow & 01101 \\ 10 & \longrightarrow & 10110 \\ 11 & \longrightarrow & 11011 \end{array}$

(日) (同) (三) (三)

э

- A binary code C is a subset of binary vectors of length n, C ⊂ Z₂ⁿ.
- The elements of a code are called codewords.
- A subgroup of \mathbb{Z}_2^n is called a **binary linear code**.
- Let M be the number of codewords. If C is a binary linear code of dimension k, $M = 2^k$.
- Hamming distance / weight.
- Minimum Hamming distance $d_H(C)$ / weight $\omega_H(C)$.
- Error correcting capability: $e = \lfloor (d_H(C) 1)/2 \rfloor$.
- Transmission rate: $\log_2 M/n$.

Objective:

The aim of this research is to study the algorithms to compute the minimum distance for binary linear codes and quaternary codes and develop new algorithms for $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes using them as a reference.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction

Let C be the binary linear code of length 5:

$$\begin{array}{cccccccc} 00000 & \mathbf{11011} \\ \mathbf{10110} & 01101 \end{array} \qquad \qquad \mathcal{G} = \left(\begin{array}{cccccccccc} 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{array}\right)$$

Generator matrix of a binary linear code in standard form:

$$\mathcal{G}_s = \left(egin{array}{c|c} I_k & A \end{array}
ight).$$
 $\mathcal{G}_s = \left(egin{array}{c|c} 1 & 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 & 1 \end{array}
ight).$

- The number of codewords is $M = 2^2 = 4$.
- The dimension is k = 2.
- The minimum Hamming distance is $d_H(C) = 3$.
- The error correcting capability is $e = \lfloor (3-1)/2 \rfloor = 1$.

ロト ・ 同ト ・ ヨト ・ ヨト

э

Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

Quaternary Linear Codes

- A quaternary code C is a subset of quaternary words of length β, C ⊂ Z^β₄.
- A codeword of a quaternary code contains 0, 1, 2 and 3.
- A subgroup of \mathbb{Z}_4^{β} is called a **quaternary linear code**.
- The type of a quaternary linear code is $2^{\gamma}4^{\delta}$.
- Lee weight of a coordinate of a quaternary word:

$$\omega_L(0) = 0, \ \omega_L(1) = \omega_L(3) = 1, \ \omega_L(2) = 2.$$

- Lee distance: $d_L(v, w) = \omega_L(v w)$.
- Minimum Lee distance $d_L(\mathcal{C})$ / weight $\omega_L(\mathcal{C})$.

7 / 23

- 4 同 6 4 日 6 4 日 6

Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

Quaternary Linear Codes. Example

Let \mathcal{C} be the quaternary linear code of length 4:

2110	2330	0220
1101	3303	2202
3211	1233	2022
1321	3123	0000
0312	0132	
1013	3031	

$$\mathcal{G} = \left(\begin{array}{rrrr} 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & 1 \end{array} \right).$$

The generator matrix in standard form is:

$$\mathcal{G}_s = \begin{pmatrix} 2T & 2I_\gamma & \mathbf{0} \\ \hline S & R & I_\delta \end{pmatrix} \qquad \mathcal{G}_s = \begin{pmatrix} 2 & 1 & \mathbf{1} & \mathbf{0} \\ 1 & 1 & \mathbf{0} & \mathbf{1} \end{pmatrix}.$$

- The number of codewords is $M = 2^0 4^2 = 16$.
- The type is 2^04^2 .
- The minimum Lee distance is $d_L(\mathcal{C}) = 3$.
- The error correcting capability is $e = \lfloor (3-1)/2 \rfloor = 1$.

Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes

Quaternary linear codes can be viewed as binary (nonlinear) codes, using in each coordinate the Gray map: $\varphi : \mathbb{Z}_4 \to \mathbb{Z}_2^2$ defined as $\varphi(0) = 00, \quad \varphi(1) = 01, \quad \varphi(2) = 11, \quad \varphi(3) = 10.$

The corresponding binary code $C = \phi(\mathcal{C})$ is called \mathbb{Z}_4 -linear code.

Q

\mathbb{Z}_4^n	$\xrightarrow{\phi}$	\mathbb{Z}_2^{2n}
2110		$11 \ 01 \ 01 \ 00$
1101		$01 \ 01 \ 00 \ 01$
3211		$10 \ 11 \ 01 \ 01$
:		:
uaternary linear code		\mathbb{Z}_4 -linear code
Lee distance		Hamming distance

The minimum Lee distance of a quaternary linear code C is equal to the minimum Hamming distance of the \mathbb{Z}_4 -linear code $C = \phi(C)$.

Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

$\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes

- A subgroup of Z^α₂ × Z^β₄ is called a Z₂Z₄-additive code. Note that the first α coordinates are in Z₂ and the last β in Z₄.
- The type is (α, β; γ, δ; κ), where γ and δ are the min. number of generators of order 2 and 4, resp.
- Lee distance/weight: Hamming distance/weight in the α coordinates plus Lee distance/weight in the β coordinates.
- Minimum Lee distance $d_L(\mathcal{C})$ / weight $\omega_L(\mathcal{C})$.
- Using the Gray map in the \mathbb{Z}_4 coordinates, they can also be seen as binary (nonlinear) codes, called $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes.
- Some nonlinear codes (ℤ₄-linear or ℤ₂ℤ₄-linear codes) are better than any linear code.

イロン イロン イヨン イヨン

Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

 $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. Example

Let ${\mathcal C}$ be a ${\mathbb Z}_2{\mathbb Z}_4\text{-}{\sf additive}$ code generated by

$$\mathcal{G} = \left(\begin{array}{c|ccccc} 1 & 0 & 2 & 0 & 2 & 0 \\ \hline 1 & 1 & 2 & 2 & 1 & 1 \end{array} \right).$$

The generator matrix in standard form is:

$$\mathcal{G}_s = \begin{pmatrix} I_{\kappa} & T_b & 2T_2 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 2T_1 & 2I_{\gamma-\kappa} & \mathbf{0} \\ \hline \mathbf{0} & S_b & S_q & R & I_\delta \end{pmatrix} \quad \mathcal{G}_s = \begin{pmatrix} \mathbf{1} & \mathbf{0} & 2 & \mathbf{0} & 2 & \mathbf{0} \\ \hline \mathbf{0} & 1 & \mathbf{0} & 2 & 3 & \mathbf{1} \end{pmatrix}.$$

- The number of codewords is $M = 4^1 2^1$, so $\gamma = 1$ and $\delta = 1$.
- The binary coordinates are $X = \{1, 2\}$ and the quaternary ones are $Y = \{3, 4, 5, 6\}$, so $\alpha = 2$ and $\beta = 4$.
- The type of the code is (2,4;1,1;1).
- The minimum Lee distance is $d_L(\mathcal{C}) = 4$.
- The error correcting capability is $e = \lfloor (4-1)/2 \rfloor = 1$.

ヨト イヨト

Quaternary Linear Codes. \mathbb{Z}_4 -Linear Codes $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

 $\mathbb{Z}_2\mathbb{Z}_4$ -Additive Codes. $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

- These codes have been studied by our research group (CCSG).
- There exists a package for this type of codes that will be integrated in MAGMA. With the implementation of these functions, the package will be completed.
- Magma:
 - Private license software (1993), developed by the Computational Algebra Group in Sydney University.
 - Software large package, computationally solve difficult problems in algebra, coding theory, and combinatorics.
 - $\bullet\,$ Many ${\rm Magma}$ functions are implemented in C language.

< ロ > < 同 > < 回 > < 回 >

Minimum Weight and Distance

- Distance invariant: minimum distance = minimum weight.
- It is easier to compute the minimum weight.

• Binary codes:

- Brute Force: small codes
- Brouwer-Zimmerman
- Probabilistic algorithms

• Z₄-linear codes:

- Brute Force: small codes
- Adaptation of Brouwer-Zimmerman
- $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes: There was no implementation. The aim of this research is to study different algorithms and implement them in MAGMA using the existing ones as references.

A B > A B >

Algorithms Implemented for $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

- Brute Force Adding Bounds: It generates all linear combinations between the rows of the generator matrix. Improvement of the algorithm adding a lower bound and an upper bound.
- Kernel-Leaders (nonlinear): Any Z₂Z₄-linear code can also be seen as a binary (nonlinear) code. It can be represented as the union of cosets of a binary linear code denoted by K(C):

$$C = \bigcup_{i=0}^{t} \Big(K(C) + c_i \Big),$$

The same techniques used in general for binary nonlinear codes can be used to compute the minimum weight of $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes.

Algorithms Implemented for $\mathbb{Z}_2\mathbb{Z}_4$ -Linear Codes

• Brouwer:

- It is an adaptation of Brouwer algorithm for binary linear and quaternary linear codes.
- It uses several generator matrices in standard form.
- The columns used in the information set of one matrix cannot be used in another standard form generator matrix.

• Zimmerman:

- The next algorithm that will be implemented.
- Similar to Brouwer algorithm.
- The columns used in the information set of one matrix can be used again in another standard form generator matrix.

- 4 同 6 4 日 6 4 日 6

- **Black Box tests:** They take into account the expected result. There is an exhaustive analisys of the requirements and functionalities and, with this information, the tests are designed.
- **Performance test:** They are designed to see how much time needs the function to obtain the results. Doing this type of test, we optimized some parts of the implementation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Performance Test 1

Brute Force Adding Bounds vs Brouwer's algorithm

イロト イヨト イヨト イヨト

3

Performance Test 2

Kernel-Leaders vs Brouwer's algorithm fixing y

(日) (同) (三) (三)

э

Performance Test 3

イロト イポト イヨト イヨト

э

Performance Test 4

Black Box Tests

イロト イポト イヨト イヨト

æ

Conclusions

- Four algorithms for $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes: Brute Force, Kernel-Leader, Brute Force Adding Bounds, and Brouwer.
- A unifying function needs to be implemented.
- The final function that computes the minimum Hamming distance for $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes is basic for implementing other functions that complete the current package for $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes. Then, this package will have the same functionality as the existing package for binary linear codes that is in MAGMA.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Future Work

- Improve the performance of the functions using Brouwer-Zimmerman algorithm.
- Study which is the best algorithm depending on the parameters of the given $\mathbb{Z}_2\mathbb{Z}_4$ -linear code. The main function should select the best to apply in each situation.
- Develop the remaining functions related to the minimum distance, to complete the package on $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes.
- Study new theoretical results to improve the performance of these functions. Improve the current functions in MAGMA to compute the minimum weight of a \mathbb{Z}_4 -linear code.
- Apply these functions to find new $\mathbb{Z}_2\mathbb{Z}_4$ -linear optimal codes.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{c} & \text{Introduction} \\ & \text{Binary Nonlinear Codes} \\ & \text{Minimum Distance of $\mathbb{Z}_2\mathbb{Z}_4$-linear codes} \\ & \text{Tests and Results} \\ & \text{Conclusions and Future Work} \\ & \text{Bibliography} \end{array}$

- J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, "Z₂Z₄-linear codes: generator matrices and duality," *Designs, Codes and Cryptography*, vol. 54, pp. 167-179, 2010.
- J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, "Z₂Z₄-linear codes. A MAGMA package," Universitat Autònoma de Barcelona, 2007.
- J. J. Cannon and W. Bosma (Eds.), *Handbook of* MAGMA *Functions*, Edition 2.13, 2006, (http://magma.maths.usyd.edu.au/magma/)
- A. Foster, "A polynomial-time probabilistic algorithm for the min. distance of an arbitrary linear error-correcting code", Math. Honor Report, 2004.
- J. Pujol, M. Villanueva and F. Zeng, "Minimum Distance of Binary Nonlinear Codes," in *Proc. 18th International Conference on Applications of Computer Algebra*, Sofia, Bulgaria, June 2012.
- Z.-X. Wan, *Quaternary Codes*, World Scientific, 1997.
- G. White, "Enumeration-based Algorithms in Coding Theory," PhD Thesis, University of Sydney, 2006.

(日) (同) (三) (三)

Thank you

æ

<ロト <部ト < 注ト < 注ト