## Computing the Minimum Hamming Distance for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Linear Codes

Marta Pujol and Mercè Villanueva

Combinatorics, Coding and Security Group (CCSG)
Universitat Autònoma de Barcelona (UAB)
VIII JMDA, Almería
11-13 July 2012

## Outline

(1) Introduction
(2) Binary Nonlinear Codes

- Quaternary Linear Codes. $\mathbb{Z}_{4}$-Linear Codes
- $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive Codes. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Linear Codes
(3) Minimum Distance of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
(4) Tests and Results
(5) Conclusions and Future Work


## Introduction

## Error-correcting code

## Examples:

| Linear code |  |  |
| :---: | :---: | :---: |
| 0 | $\longrightarrow$ | 000 |
| 1 | $\longrightarrow$ | 111 |

Nonlinear code
$0 \quad \longrightarrow \quad 101$
$1 \longrightarrow 011$

| Linear code |  |  |
| :--- | :--- | :--- |
| 00 | $\longrightarrow$ | 00000 |
| 01 | $\longrightarrow$ | 01101 |
| 10 | $\longrightarrow$ | 10110 |
| 11 | $\longrightarrow$ | 11011 |

## Introduction

- A binary code $C$ is a subset of binary vectors of length $n$, $C \subset \mathbb{Z}_{2}^{n}$.
- The elements of a code are called codewords.
- A subgroup of $\mathbb{Z}_{2}^{n}$ is called a binary linear code.
- Let $M$ be the number of codewords.

If $C$ is a binary linear code of dimension $k, M=2^{k}$.

- Hamming distance / weight.
- Minimum Hamming distance $d_{H}(C) /$ weight $\omega_{H}(C)$.
- Error correcting capability: $e=\left\lfloor\left(d_{H}(C)-1\right) / 2\right\rfloor$.
- Transmission rate: $\log _{2} M / n$.


## Objective:

The aim of this research is to study the algorithms to compute the minimum distance for binary linear codes and quaternary codes and develop new algorithms for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes using them as a reference.

## Introduction

Let $C$ be the binary linear code of length 5 :

$$
\begin{array}{cc}
00000 & \mathbf{1 1 0 1 1} \\
10110 & 01101
\end{array} \quad \mathcal{G}=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Generator matrix of a binary linear code in standard form:

$$
\begin{gathered}
\mathcal{G}_{s}=\left(I_{k} \mid A\right) \\
\mathcal{G}_{s}=\left(\begin{array}{lllll}
\mathbf{1} & \mathbf{0} & 1 & 1 & 0 \\
\mathbf{0} & \mathbf{1} & 1 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

- The number of codewords is $M=2^{2}=4$.
- The dimension is $k=2$.
- The minimum Hamming distance is $d_{H}(C)=3$.
- The error correcting capability is $e=\lfloor(3-1) / 2\rfloor=1$.


## Quaternary Linear Codes

- A quaternary code $\mathcal{C}$ is a subset of quaternary words of length $\beta, \mathcal{C} \subset \mathbb{Z}_{4}^{\beta}$.
- A codeword of a quaternary code contains $0,1,2$ and 3 .
- A subgroup of $\mathbb{Z}_{4}^{\beta}$ is called a quaternary linear code.
- The type of a quaternary linear code is $2^{\gamma} 4^{\delta}$.
- Lee weight of a coordinate of a quaternary word:

$$
\omega_{L}(0)=0, \omega_{L}(1)=\omega_{L}(3)=1, \omega_{L}(2)=2
$$

- Lee distance: $d_{L}(v, w)=\omega_{L}(v-w)$.
- Minimum Lee distance $d_{L}(\mathcal{C}) /$ weight $\omega_{L}(\mathcal{C})$.


## Quaternary Linear Codes. Example

Let $\mathcal{C}$ be the quaternary linear code of length 4 :

| $\mathbf{2 1 1 0}$ | 2330 | 0220 |
| :--- | :--- | :--- |
| $\mathbf{1 1 0 1}$ | 3303 | 2202 |
| 3211 | 1233 | 2022 |
| 1321 | 3123 | 0000 |
| 0312 | 0132 |  |
| 1013 | 3031 |  |

$$
\mathcal{G}=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 1 & 0 & 1
\end{array}\right) .
$$

The generator matrix in standard form is:

$$
\mathcal{G}_{s}=\left(\begin{array}{ccc}
2 T & 2 I_{\gamma} & \mathbf{0} \\
\hline S & R & I_{\delta}
\end{array}\right) \quad \mathcal{G}_{s}=\left(\begin{array}{cccc}
2 & 1 & \mathbf{1} & \mathbf{0} \\
1 & 1 & \mathbf{0} & \mathbf{1}
\end{array}\right) .
$$

- The number of codewords is $M=2^{0} 4^{2}=16$.
- The type is $2^{0} 4^{2}$.
- The minimum Lee distance is $d_{L}(\mathcal{C})=3$.
- The error correcting capability is $e=\lfloor(3-1) / 2\rfloor=1$.


## Quaternary Linear Codes. $\mathbb{Z}_{4}$-Linear Codes

Quaternary linear codes can be viewed as binary (nonlinear) codes, using in each coordinate the Gray map: $\varphi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2}^{2}$ defined as

$$
\varphi(0)=00, \quad \varphi(1)=01, \quad \varphi(2)=11, \quad \varphi(3)=10
$$

The corresponding binary code $C=\phi(\mathcal{C})$ is called $\mathbb{Z}_{4}$-linear code.
Example:

| $\mathbb{Z}_{4}^{n}$ <br> 2110 | $\xrightarrow{\phi}$ |
| :---: | :---: | :---: |
| 1101 |  |

Quaternary linear code Lee distance
$\mathbb{Z}_{4}$-linear code Hamming distance

The minimum Lee distance of a quaternary linear code $\mathcal{C}$ is equal to the minimum Hamming distance of the $\mathbb{Z}_{4}$-linear code $C=\phi(\mathcal{C})$.

## $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive Codes

- A subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is called a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. Note that the first $\alpha$ coordinates are in $\mathbb{Z}_{2}$ and the last $\beta$ in $\mathbb{Z}_{4}$.
- The type is $(\alpha, \beta ; \gamma, \delta ; \kappa)$, where $\gamma$ and $\delta$ are the min. number of generators of order 2 and 4, resp.
- Lee distance/weight: Hamming distance/weight in the $\alpha$ coordinates plus Lee distance/weight in the $\beta$ coordinates.
- Minimum Lee distance $d_{L}(\mathcal{C}) /$ weight $\omega_{L}(\mathcal{C})$.
- Using the Gray map in the $\mathbb{Z}_{4}$ coordinates, they can also be seen as binary (nonlinear) codes, called $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes.
- Some nonlinear codes ( $\mathbb{Z}_{4}$-linear or $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes) are better than any linear code.


## $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive Codes. Example

Let $\mathcal{C}$ be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by

$$
\mathcal{G}=\left(\begin{array}{ll|llll}
1 & 0 & 2 & 0 & 2 & 0 \\
\hline 1 & 1 & 2 & 2 & 1 & 1
\end{array}\right) .
$$

The generator matrix in standard form is:

$$
\mathcal{G}_{s}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\hline \mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right) \quad \mathcal{G}_{s}=\left(\begin{array}{cc|cccc}
\mathbf{1} & 0 & 2 & 0 & 2 & 0 \\
\hline 0 & 1 & 0 & 2 & 3 & \mathbf{1}
\end{array}\right)
$$

- The number of codewords is $M=4^{1} 2^{1}$, so $\gamma=1$ and $\delta=1$.
- The binary coordinates are $X=\{1,2\}$ and the quaternary ones are $Y=\{3,4,5,6\}$, so $\alpha=2$ and $\beta=4$.
- The type of the code is $(2,4 ; 1,1 ; 1)$.
- The minimum Lee distance is $d_{L}(\mathcal{C})=4$.
- The error correcting capability is $e=\lfloor(4-1) / 2\rfloor=1$.


## $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive Codes. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Linear Codes

- These codes have been studied by our research group (CCSG).
- There exists a package for this type of codes that will be integrated in Magma. With the implementation of these functions, the package will be completed.
- Magma:
- Private license software (1993), developed by the Computational Algebra Group in Sydney University.
- Software large package, computationally solve difficult problems in algebra, coding theory, and combinatorics.
- Many Magma functions are implemented in C language.


## Minimum Weight and Distance

- Distance invariant: minimum distance $=$ minimum weight.
- It is easier to compute the minimum weight.
- Binary codes:
- Brute Force: small codes
- Brouwer-Zimmerman
- Probabilistic algorithms
- $\mathbb{Z}_{4}$-linear codes:
- Brute Force: small codes
- Adaptation of Brouwer-Zimmerman
- $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: There was no implementation. The aim of this research is to study different algorithms and implement them in Magma using the existing ones as references.


## Algorithms Implemented for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Linear Codes

- Brute Force Adding Bounds: It generates all linear combinations between the rows of the generator matrix. Improvement of the algorithm adding a lower bound and an upper bound.
- Kernel-Leaders (nonlinear): Any $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code can also be seen as a binary (nonlinear) code. It can be represented as the union of cosets of a binary linear code denoted by $K(C)$ :

$$
C=\bigcup_{i=0}^{t}\left(K(C)+c_{i}\right)
$$

The same techniques used in general for binary nonlinear codes can be used to compute the minimum weight of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes.

## Algorithms Implemented for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Linear Codes

- Brouwer:
- It is an adaptation of Brouwer algorithm for binary linear and quaternary linear codes.
- It uses several generator matrices in standard form.
- The columns used in the information set of one matrix cannot be used in another standard form generator matrix.
- Zimmerman:
- The next algorithm that will be implemented.
- Similar to Brouwer algorithm.
- The columns used in the information set of one matrix can be used again in another standard form generator matrix.


## Types of Testing

- Black Box tests: They take into account the expected result. There is an exhaustive analisys of the requirements and functionalities and, with this information, the tests are designed.
- Performance test: They are designed to see how much time needs the function to obtain the results. Doing this type of test, we optimized some parts of the implementation.

Introduction
Binary Nonlinear Codes
Minimum Distance of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
Tests and Results
Conclusions and Future Work
Bibliography

## Performance Test 1

Brute Force Adding Bounds vs Brouwer's algorithm


Introduction
Binary Nonlinear Codes
Minimum Distance of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
Tests and Results
Conclusions and Future Work
Bibliography

## Performance Test 2

Kernel-Leaders vs Brouwer's algorithm fixing $Y$


## Performance Test 3

Kernel-Leaders vs Brouwer's algorithm when $\bar{\delta}$ is 0


## Performance Test 4

Black Box Tests
Num. Codewords $=2^{\wedge} 10$


## Conclusions

- Four algorithms for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: Brute Force, Kernel-Leader, Brute Force Adding Bounds, and Brouwer.
- A unifying function needs to be implemented.
- The final function that computes the minimum Hamming distance for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes is basic for implementing other functions that complete the current package for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes. Then, this package will have the same functionality as the existing package for binary linear codes that is in Magma.


## Future Work

- Improve the performance of the functions using Brouwer-Zimmerman algorithm.
- Study which is the best algorithm depending on the parameters of the given $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code. The main function should select the best to apply in each situation.
- Develop the remaining functions related to the minimum distance, to complete the package on $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes.
- Study new theoretical results to improve the performance of these functions. Improve the current functions in Magma to compute the minimum weight of a $\mathbb{Z}_{4}$-linear code.
- Apply these functions to find new $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear optimal codes.

J．Borges，C．Fernández，J．Pujol，J．Rifà and M．Villanueva，＂ $\mathbb{Z}_{2} \mathbb{Z}_{4}$－linear codes：generator matrices and duality，＂Designs，Codes and Cryptography， vol．54，pp．167－179， 2010.

J．Borges，C．Fernández，J．Pujol，J．Rifà and M．Villanueva，＂ $\mathbb{Z}_{2} \mathbb{Z}_{4}$－linear codes．A Magma package，＂Universitat Autònoma de Barcelona， 2007.

J．J．Cannon and W．Bosma（Eds．），Handbook of Magma Functions， Edition 2．13，2006，（http：／／magma．maths．usyd．edu．au／magma／）
（ A．Foster，＂A polynomial－time probabilistic algorithm for the min．distance of an arbitrary linear error－correcting code＂，Math．Honor Report， 2004.

差
J．Pujol，M．Villanueva and F．Zeng，＂Minimum Distance of Binary Nonlinear Codes，＂in Proc．18th International Conference on Applications of Computer Algebra，Sofia，Bulgaria，June 2012.
音
Z．－X．Wan，Quaternary Codes，World Scientific， 1997.
国
G．White，＂Enumeration－based Algorithms in Coding Theory，＂PhD Thesis，University of Sydney， 2006.

## Thank you

