Watching Systems in Complete Bipartite Graphs

C. Hernando M. Mora I. M. Pelayo

Depts. Matemàtica Aplicada I, II, III Universitat Politècnica de Catalunya

VIII JMDA. Almería, 10-13 de Julio de 2012

Outline

Introduction Detection devices and graphs Identifying codes

Watching systems and watching number

Watching systems Bounds of the watching number

Complete bipartite graphs

Bounds of the watching number Concrete values

Detection devices and graphs Identifying codes

Detection devices

- Detection devices located at some vertices of a graph
- Detect and locate an object placed at any vertex of a graph
- Dominating/total dominating sets
- Locating sets

Detection devices and graphs Identifying codes

Detection devices

- Detection devices located at some vertices of a graph
- Detect and locate an object placed at any vertex of a graph
- Dominating/total dominating sets
- Locating sets

Detection devices and graphs Identifying codes

Detection devices and graphs

Detection devices and graphs Identifying codes

Definitions

- G = (V, E) graph,
 - $\blacktriangleright N(u) = \{v : uv \in E\}$
 - $\blacktriangleright N[u] = \{u\} \cup N(u)$
 - twin vertices: N[u] = N[v]
 - twin-free graph: it has no pair of twin vertices
 - ▶ dominating set: $S \subseteq V$ s.t. for all $v \in V \setminus S$, $S \cap N(v) \neq \emptyset$
 - dominating number, γ(G): minimum size of a dominating set of G

Detection devices and graphs Identifying codes

Definitions

- G = (V, E) graph,
 - $\blacktriangleright N(u) = \{v : uv \in E\}$
 - $\blacktriangleright N[u] = \{u\} \cup N(u)$
 - twin vertices: N[u] = N[v]
 - twin-free graph: it has no pair of twin vertices
 - ▶ dominating set: $S \subseteq V$ s.t. for all $v \in V \setminus S$, $S \cap N(v) \neq \emptyset$
 - ► dominating number, γ(G): minimum size of a dominating set of G

ヘロト ヘアト ヘビト ヘビト

Detection devices and graphs Identifying codes

Definitions

- G = (V, E) graph,
 - $\blacktriangleright N(u) = \{v : uv \in E\}$
 - $\blacktriangleright N[u] = \{u\} \cup N(u)$
 - twin vertices: N[u] = N[v]
 - twin-free graph: it has no pair of twin vertices
 - ▶ dominating set: $S \subseteq V$ s.t. for all $v \in V \setminus S$, $S \cap N(v) \neq \emptyset$
 - dominating number, γ(G): minimum size of a dominating set of G

ヘロト ヘ戸ト ヘヨト ヘヨト

Detection devices and graphs Identifying codes

Identifying codes [Karpovsky, Chakrabarty, Levitin, 1998]

Identifying code in a graph G = (V, E):

 $S \subseteq V$ s.t. the sets $N[v] \cap C$, $v \in V(G)$, are all nonempty and distinct.

- ▶ *label* of vertex v: $L_C(v) = N[v] \cap C$
- ► identifying number, i(G): minimum size of an identifying code of G
- Identifying codes exist only in twin-free graphs.

イロト 不得 トイヨト イヨト

э

Detection devices and graphs Identifying codes

Identifying codes [Karpovsky, Chakrabarty, Levitin, 1998]

Identifying code in a graph G = (V, E):

 $S \subseteq V$ s.t. the sets $N[v] \cap C$, $v \in V(G)$, are all nonempty and distinct.

- *label* of vertex v: $L_C(v) = N[v] \cap C$
- identifying number, i(G): minimum size of an identifying code of G
- Identifying codes exist only in twin-free graphs.

Watching systems Bounds of the watching number

Watching systems

[Auger, Charon, Hudry, Lobstein, 2010]

Watching system in a graph G = (V, E) graph:

 $W = \{w_1, w_2, \ldots, w_k\}$ where $w_i = (I(w_i), A(w_i))$, with $I(w_i) = v_i \in V(G)$ and $A(w_i) \subseteq N[v_i]$, for all $i \in \{1, 2, \ldots, k\}$, s.t. the sets $L_W(v) = \{w \in W : v \in A(w_i)\}$ are all nonempty and distinct.

► w_i is a watcher located at vertex I(w_i) that checks its watching zone, A(w_i)

• $L_W(v)$ is the label of vertex v

Several watchers at the same vertex, each watcher checks its watching zone

イロト 不得 トイヨト イヨト

Watching systems Bounds of the watching number

Watching systems

[Auger, Charon, Hudry, Lobstein, 2010]

Watching system in a graph G = (V, E) graph:

 $W = \{w_1, w_2, \ldots, w_k\}$ where $w_i = (I(w_i), A(w_i))$, with $I(w_i) = v_i \in V(G)$ and $A(w_i) \subseteq N[v_i]$, for all $i \in \{1, 2, \ldots, k\}$, s.t. the sets $L_W(v) = \{w \in W : v \in A(w_i)\}$ are all nonempty and distinct.

- ► w_i is a watcher located at vertex I(w_i) that checks its watching zone, A(w_i)
- L_W(v) is the label of vertex v

Several watchers at the same vertex, each watcher checks its watching zone

イロト 不得 トイヨト イヨト

э

Watching systems Bounds of the watching number

Watching systems

[Auger, Charon, Hudry, Lobstein, 2010]

Watching system in a graph G = (V, E) graph:

 $W = \{w_1, w_2, \ldots, w_k\}$ where $w_i = (I(w_i), A(w_i))$, with $I(w_i) = v_i \in V(G)$ and $A(w_i) \subseteq N[v_i]$, for all $i \in \{1, 2, \ldots, k\}$, s.t. the sets $L_W(v) = \{w \in W : v \in A(w_i)\}$ are all nonempty and distinct.

- ► w_i is a watcher located at vertex I(w_i) that checks its watching zone, A(w_i)
- L_W(v) is the label of vertex v

Several watchers at the same vertex, each watcher checks its watching zone

イロト イポト イヨト イヨト

Watching systems Bounds of the watching number

Watching number

- ► watching number, w(G): minimum size of a watching system of G
- minimum watching system: watching system of cardinality w(G)
- Watching systems exist for all graphs
- $w(G) \leq i(G)$ if there exists at least an identifying code in G
- A watching system remais so if we add edges

ヘロト ヘ戸ト ヘヨト ヘヨト

Watching systems Bounds of the watching number

Watching number

- watching number, w(G): minimum size of a watching system of G
- minimum watching system: watching system of cardinality w(G)
- Watching systems exist for all graphs
- $w(G) \leq i(G)$ if there exists at least an identifying code in G
- A watching system remais so if we add edges

ヘロト 人間 とくほ とくほ とう

Watching systems Bounds of the watching number

Example

$$G = K_{1,6}: i(G) = 6, w(G) = 3$$
$$W = \{w_1, w_2, w_3\}, l(w_i) = 7$$
$$A(w_1) = \{1, 4, 5, 7\}, A(w_2) = \{2, 4, 6, 7\}, A(w_3) = \{3, 5, 6, 7\}$$

 $L_{W}(1) = \{w_{1}\}, L_{W}(2) = \{w_{2}\}, L_{W}(3) = \{w_{3}\}, L_{W}(4) = \{w_{1}, w_{2}\}, L_{W}(5) = \{w_{1}, w_{3}\}, L_{W}(6) = \{w_{2}, w_{3}\}, L_{W}(7) = \{w_{1}, w_{2}, w_{3}\}.$

э

Watching systems Bounds of the watching number

General bounds of the watching number

- $w(G) \geq \lceil \log_2(n+1) \rceil$
- ► Complete graphs, stars, graphs s.t. Δ = n 1 attain this bound
- $w(G) \ge \gamma(G)$
- $w(G) \leq \gamma(G) \lceil \log_2(\Delta + 2) \rceil$
- $w(G) \leq i(G)$, if G is twin-free
- $w(G) \leq w(H)$ for any spanning subgraph H of G
- ▶ $w(G) \le \frac{2n}{3}$, if G is a connected graph of order 3 or ≥ 5 [Auger, Charon, Hudry, Lobstein, to appear]

ヘロト ヘ戸ト ヘヨト ヘヨト

Watching systems Bounds of the watching number

General bounds of the watching number

- $w(G) \geq \lceil \log_2(n+1) \rceil$
- ► Complete graphs, stars, graphs s.t. Δ = n 1 attain this bound
- $w(G) \geq \gamma(G)$
- $w(G) \leq \gamma(G) \lceil \log_2(\Delta + 2) \rceil$
- $w(G) \leq i(G)$, if G is twin-free
- $w(G) \leq w(H)$ for any spanning subgraph H of G
- ▶ $w(G) \le \frac{2n}{3}$, if G is a connected graph of order 3 or ≥ 5 [Auger, Charon, Hudry, Lobstein, to appear]

ヘロト ヘ戸ト ヘヨト ヘヨト

Watching systems Bounds of the watching number

General bounds of the watching number

- $w(G) \geq \lceil \log_2(n+1) \rceil$
- ► Complete graphs, stars, graphs s.t. Δ = n 1 attain this bound
- $w(G) \geq \gamma(G)$
- $w(G) \leq \gamma(G) \lceil \log_2(\Delta + 2) \rceil$
- $w(G) \leq i(G)$, if G is twin-free
- $w(G) \leq w(H)$ for any spanning subgraph H of G
- ▶ $w(G) \le \frac{2n}{3}$, if G is a connected graph of order 3 or ≥ 5 [Auger, Charon, Hudry, Lobstein, to appear]

ヘロト 人間 とくほ とくほ とう

Watching systems Bounds of the watching number

General bounds of the watching number

- $w(G) \geq \lceil \log_2(n+1) \rceil$
- ► Complete graphs, stars, graphs s.t. Δ = n − 1 attain this bound
- $w(G) \geq \gamma(G)$
- $w(G) \leq \gamma(G) \lceil \log_2(\Delta + 2) \rceil$
- $w(G) \leq i(G)$, if G is twin-free
- $w(G) \le w(H)$ for any spanning subgraph H of G
- ▶ $w(G) \le \frac{2n}{3}$, if G is a connected graph of order 3 or ≥ 5 [Auger, Charon, Hudry, Lobstein, to appear]

ヘロト 人間 ト 人目 ト 人目 トー

Watching systems Bounds of the watching number

Watching number and identifying number of some families

$$w(P_n) = \left\lceil \frac{n+1}{2} \right\rceil$$
 $i(P_n) = \left\lceil \frac{n+1}{2} \right\rceil$

$$w(C_n) = \begin{cases} 3 & \text{, if } n = 4; \\ \lceil \frac{n}{2} \rceil & \text{, otherwise.} \end{cases} \quad i(C_n) = \begin{cases} 3, & \text{if } n = 4, 5; \\ \frac{n}{2}, & \text{if } n \ge 6 \text{ even}; \\ \frac{n+3}{2}, & \text{if } n \ge 7 \text{ odd.} \end{cases}$$

ヘロト ヘアト ヘビト ヘビト

э

Bounds of the watching number Concrete values

Complete bipartite graphs

- $K_{r,s}, 2 \le r \le s$ $\succ \gamma(K_{r,s}) = 2$ $\flat i(K_{r,s}) = r + s 2$
- $W = \{w_i : i \in [m]\}$ watching system in $K_{r,s}$
 - ► $V(K_{r,s}) = V_1 \cup V_2, |V_1| = r, |V_2| = s$
 - $\blacktriangleright \ \mathcal{L}(W) = \{I(w_i) : i \in [m]\} \subseteq V$
 - ► $\mathcal{L}_1(W) = \mathcal{L}(W) \cap V_1$, $\mathcal{L}_2(W) = \mathcal{L}(W) \cap V_2$,

ヘロト ヘアト ヘビト ヘビト

-

Bounds of the watching number Concrete values

Complete bipartite graphs

$$K_{r,s}, 2 \le r \le s$$

$$\gamma(K_{r,s}) = 2$$

$$i(K_{r,s}) = r + s - 2$$

$$W = \{w_i : i \in [m]\}$$
 watching system in $K_{r,s}$

►
$$V(K_{r,s}) = V_1 \cup V_2$$
, $|V_1| = r$, $|V_2| = s$

$$\blacktriangleright \mathcal{L}(W) = \{I(w_i) : i \in [m]\} \subseteq V$$

►
$$\mathcal{L}_1(W) = \mathcal{L}(W) \cap V_1$$
, $\mathcal{L}_2(W) = \mathcal{L}(W) \cap V_2$,

イロト 不得 トイヨト イヨト

ъ

Bounds of the watching number Concrete values

Bounds

$$w_0(r,s) = \lceil \log_2(r+s+1) \rceil$$

Bounds:

 $\blacktriangleright w_0(r,s) \le w(K_{r,s}) \le \lceil \log_2 r \rceil + \lceil \log_2 s \rceil$

Both bounds are tight:

- $w(K_{3,16}) = w_0(3,16) = 5$
- $\blacktriangleright w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7$

Particular case:

$$w(K_{2,s}) = w_0(2,s) = \lceil \log_2(s+3) \rceil$$

ヘロト ヘアト ヘビト ヘビト

э

Bounds

$$w_0(r,s) = \lceil \log_2(r+s+1) \rceil$$

Bounds:

• $w_0(r,s) \le w(K_{r,s}) \le \lceil \log_2 r \rceil + \lceil \log_2 s \rceil$

Both bounds are tight:

- $w(K_{3,16}) = w_0(3,16) = 5$
- $\blacktriangleright w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7$

Particular case:

$$w(K_{2,s}) = w_0(2,s) = \lceil \log_2(s+3) \rceil$$

イロト 不得 トイヨト イヨト

Bounds

$$w_0(r,s) = \lceil \log_2(r+s+1) \rceil$$

Bounds:

► $w_0(r, s) \le w(K_{r,s}) \le \lceil \log_2 r \rceil + \lceil \log_2 s \rceil$

Both bounds are tight:

- $w(K_{3,16}) = w_0(3,16) = 5$
- $w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7$

Particular case:

•
$$w(K_{2,s}) = w_0(2,s) = \lceil \log_2(s+3) \rceil$$

イロト イポト イヨト イヨト

Bounds

$$w_0(r,s) = \lceil \log_2(r+s+1) \rceil$$

Bounds:

► $w_0(r, s) \le w(K_{r,s}) \le \lceil \log_2 r \rceil + \lceil \log_2 s \rceil$

Both bounds are tight:

- $w(K_{3,16}) = w_0(3,16) = 5$
- $w(K_{8,11}) = \lceil \log_2 8 \rceil + \lceil \log_2 11 \rceil = 7$

Particular case:

•
$$w(K_{2,s}) = w_0(2,s) = \lceil \log_2(s+3) \rceil$$

イロト 不得 トイヨト イヨト

Watching Systems in Complete Bipartite Graphs

Consider $K_{r,s}$, $2 \le r \le s$:

- If a watching system has 2 watchers at a same vertex, we obtain another watching system by placing one of them at another vertex of the same stable set
- ► A watching system with all watchers located in the same stable set has size at least max{r, [log₂(r + s + 1)]}
- ► A watching system with at least a watcher in each stable set has size > w₀(r, s)

ヘロト ヘアト ヘビト ヘビト

Watching Systems in Complete Bipartite Graphs

Consider $K_{r,s}$, $2 \le r \le s$:

- If a watching system has 2 watchers at a same vertex, we obtain another watching system by placing one of them at another vertex of the same stable set
- A watching system with all watchers located in the same stable set has size at least max{r, [log₂(r + s + 1)]}
- ► A watching system with at least a watcher in each stable set has size > w₀(r, s)

ヘロト ヘ戸ト ヘヨト ヘヨト

Watching Systems in Complete Bipartite Graphs

Consider $K_{r,s}$, $2 \le r \le s$:

- If a watching system has 2 watchers at a same vertex, we obtain another watching system by placing one of them at another vertex of the same stable set
- A watching system with all watchers located in the same stable set has size at least max{r, [log₂(r + s + 1)]}
- ► A watching system with at least a watcher in each stable set has size > w₀(r, s)

ヘロト ヘ戸ト ヘヨト ヘヨト

Bounds of the watching number Concrete values

Attaining the lower bound

If $2 \leq r \leq s$,

▶ If $K_{r,s} \neq K_{5,5}$, $w(K_{r,s}) = w_0(r, s)$ if and only if $r \le w_0(r, s)$.

Bounds of the watching number Concrete values

Attaining the lower bound

If $2 \le r \le s$,

▶ If $K_{r,s} \neq K_{5,5}$, $w(K_{r,s}) = w_0(r, s)$ if and only if $r \leq w_0(r, s)$.

Bounds of the watching number Concrete values

Not attaining the lower bound

If $r > w_0(r, s)$,

- There is a minimum watching system W satisfying $|\mathcal{L}_1(W)| \ge |\mathcal{L}_2(W)|$
- ▶ $w(K_{r,s}) = \min\{m : m = h + k, r \le k + 2^h 1, s \le h + 2^k 1\}$
- If $6 \le r = s$, then $w(K_{r,r}) \ne w_0(r,r)$
- For each r ≥ 3, there is a minimum watching system of K_{r,r} such that 0 ≤ |L₁(W)| − |L₂(W)| ≤ 1
- For each $r \ge 3$, if $n_h = h + 2^h$,

$$w(\mathcal{K}_{r,r}) = \begin{cases} 2h, & \text{if } n_{h-1} < r < n_h \text{ for some } h \ge 2; \\ 2h+1, & \text{if } r = n_h \text{ for some } h \ge 2. \end{cases}$$

イロト 不得 とくほ とくほ とうほう

Bounds of the watching number Concrete values

Not attaining the lower bound

If $r > w_0(r, s)$,

• There is a minimum watching system W satisfying $|\mathcal{L}_1(W)| \ge |\mathcal{L}_2(W)|$

•
$$w(K_{r,s}) = \min\{m : m = h + k, r \le k + 2^h - 1, s \le h + 2^k - 1\}$$

• If
$$6 \le r = s$$
, then $w(K_{r,r}) \ne w_0(r,r)$

- For each r ≥ 3, there is a minimum watching system of K_{r,r} such that 0 ≤ |L₁(W)| − |L₂(W)| ≤ 1
- For each $r \ge 3$, if $n_h = h + 2^h$,

$$w(\mathcal{K}_{r,r}) = \begin{cases} 2h, & \text{if } n_{h-1} < r < n_h \text{ for some } h \ge 2; \\ 2h+1, & \text{if } r = n_h \text{ for some } h \ge 2. \end{cases}$$

<ロ> <同> <同> < 回> < 回> < 回> = 三

Feasible values

$$w(K_{r,s}) = w_0(r,s), \text{ if } r \le w_0(r,s); \\ w_0(r,s) \le w(K_{r,s}) \le r, \text{ if } r > w_0(r,s).$$

 $w_0(r,s) \leq w(K_{r,s}) \leq \max\{r, w_0(r,s)\}$

Given *a*, *b*, *c* with $2 \le a \le b \le c$, find *r*, *s*, such that $2 \le r \le s$ and $w_0(K_{r,s}) = a$, $w(K_{r,s}) = b$, max{ $r, w_0(r, s)$ } = *c*

Feasible values

$$w(K_{r,s}) = w_0(r,s), \text{ if } r \le w_0(r,s); \\ w_0(r,s) \le w(K_{r,s}) \le r, \text{ if } r > w_0(r,s).$$

$w_0(r,s) \leq w(\mathcal{K}_{r,s}) \leq \max\{r, w_0(r,s)\}$

Given *a*, *b*, *c* with $2 \le a \le b \le c$, find *r*, *s*, such that $2 \le r \le s$ and $w_0(K_{r,s}) = a$, $w(K_{r,s}) = b$, max{ $r, w_0(r, s)$ } = *c*

Feasible values

$$w(K_{r,s}) = w_0(r,s), \text{ if } r \le w_0(r,s); \\ w_0(r,s) \le w(K_{r,s}) \le r, \text{ if } r > w_0(r,s).$$

$$w_0(r,s) \leq w(K_{r,s}) \leq \max\{r, w_0(r,s)\}$$

Given a, b, c with $2 \le a \le b \le c$, find r, s, such that $2 \le r \le s$ and $w_0(K_{r,s}) = a, w(K_{r,s}) = b, \max\{r, w_0(r, s)\} = c$

★ Ξ → ★ Ξ →

< 🗇 🕨

ъ

Feasible values

Existence of r, s such that $w_0(K_{r,s}) = a$, $w(K_{r,s}) = b$, and $\max\{r, w_0(r, s)\} = c$:

- If $2 \le a = b = c$, a solution is r = a and $s = 2^a a 1$
- If $2 \le a = b < c$, there is no solution
- If 2 ≤ a < b = c, there is solution if and only if a ≥ log₂(2^{c-3} + c + 3).
- If 2 ≤ a < b < c, if there is a solution, then a + ⌈log₂(c − a + 3)⌉ − 2 ≤ b ≤ a + ⌈log₂(c − a + 1)⌉

イロト イポト イヨト イヨト

-

Watching number of $K_{r,s}$

 $w(K_{5,5}) = 4$, and for $s \ge r \ge 3$, not both equal to 5:

$$\begin{split} & w(\mathcal{K}_{r,s}) = w_0, & \text{if } r \leq w_0; \\ & w(\mathcal{K}_{r,s}) = w_0 + 1, & \text{if } r = w_0 + 1; \\ & w(\mathcal{K}_{r,s}) \in \{w_0 + 1, w_0 + 2\}, & \text{if } r = w_0 + 2; \\ & w(\mathcal{K}_{r,s}) \in \{w_0 + \lceil \log_2(r - w_0 + 1) \rceil, & \\ & w_0 + \lceil \log_2(r - w_0 + 2) \rceil - 1, & \\ & w_0 + \lceil \log_2(r - w_0 + 3) \rceil - 2\} & \text{if } r \geq w_0 + 3. \end{split}$$

The identifying number of the complete bipartite graph $K_{r,s}$ is r + s - 2!

イロト 不得 トイヨト イヨト

э

Summary

- Watching systems as an extension of identifying codes
 - Watching systems exist in all graphs
 - $w(G) \leq i(G)$ if G has at least an identifying code
- Watching systems and watching number of complete bipartite graphs
- Open problems
 - Watching number in bipartite graphs and other families
 - Graphs with minimum watching number

Summary

- Watching systems as an extension of identifying codes
 - Watching systems exist in all graphs
 - $w(G) \leq i(G)$ if G has at least an identifying code
- Watching systems and watching number of complete bipartite graphs
- Open problems
 - Watching number in bipartite graphs and other families
 - Graphs with minimum watching number

くロト (得) (目) (日)

Summary

- Watching systems as an extension of identifying codes
 - Watching systems exist in all graphs
 - $w(G) \leq i(G)$ if G has at least an identifying code
- Watching systems and watching number of complete bipartite graphs
- Open problems
 - Watching number in bipartite graphs and other families
 - Graphs with minimum watching number

ヘロト ヘアト ヘビト ヘビト