Grafos radiales de Moore con cintura local máxima

Nacho López

Departament de Matemàtica Universitat de Lleida

JMDA 2012

Moore graphs

The order of a graph G with maximum degree d and diameter k is at most:

$$M_{d,k} = 1 + d + d(d-1) + \dots + d(d-1)^{k-2} + d(d-1)^{k-1}$$
 (Moore bound)

Definition

A regular graph G of degree d, diameter k and order $M_{d,k}$ is called a Moore graph.

Theorem (Banai and Ito '73, Hoffman and Singleton '60, Damerell '73)

Moore graphs of degree d and diameter k only exist in the following cases:

Theorem (Banai and Ito '73, Hoffman and Singleton '60, Damerell '73)

Moore graphs of degree d and diameter k only exist in the following cases:

- k = 1 and $d \ge 1$ (Complete graph K_{d+1});
- $k \ge 3$ and d = 2 (Cycle graph C_{2k+1});
- k = 2 and d = 2 (Cycle graph C_5);

Theorem (Banai and Ito '73, Hoffman and Singleton '60, Damerell '73)

Moore graphs of degree d and diameter k only exist in the following cases:

- k = 1 and $d \ge 1$ (Complete graph K_{d+1});
- $k \ge 3$ and d = 2 (Cycle graph C_{2k+1});
- k = 2 and d = 2 (Cycle graph C_5);
- k = 2 and d = 3 (Petersen graph);
- k = 2 and d = 7 (Hoffman-Singleton graph);

Theorem (Banai and Ito '73, Hoffman and Singleton '60, Damerell '73)

Moore graphs of degree d and diameter k only exist in the following cases:

- k = 1 and $d \ge 1$ (Complete graph K_{d+1});
- $k \ge 3$ and d = 2 (Cycle graph C_{2k+1});
- k = 2 and d = 2 (Cycle graph C_5);
- k = 2 and d = 3 (Petersen graph);
- k = 2 and d = 7 (Hoffman-Singleton graph);

and possibly for k = 2 and d = 57.

Theorem (Banai and Ito '73, Hoffman and Singleton '60, Damerell '73)

Moore graphs of degree d and diameter k only exist in the following cases:

- k = 1 and $d \ge 1$ (Complete graph K_{d+1});
- $k \ge 3$ and d = 2 (Cycle graph C_{2k+1});
- k = 2 and d = 2 (Cycle graph C_5);
- k = 2 and d = 3 (Petersen graph);
- k = 2 and d = 7 (Hoffman-Singleton graph);

and possibly for k = 2 and d = 57.

Hoffman-Singleton graph: Vertex i in P_i is joined to vertex $i + jk \pmod{5}$ of Q_k

- order-relaxed Moore graphs.
 - **Graphs of order close to Moore bound**: regular graphs of degree d, diameter k and order $n = M_{d,k} \delta$.

- order-relaxed Moore graphs.
 - Graphs of order close to Moore bound: regular graphs of degree d, diameter k and order $n = M_{d,k} \delta$.
- degree-relaxed Moore graphs.
 - Near-Moore graphs: graphs on $M_{d,k}$ vertices, diameter k and almost every vertex has degree d (a small set of vertices has degree $d + \delta$).

- order-relaxed Moore graphs.
 - Graphs of order close to Moore bound: regular graphs of degree d, diameter k and order $n = M_{d,k} \delta$.
- degree-relaxed Moore graphs.
 - Near-Moore graphs: graphs on $M_{d,k}$ vertices, diameter k and almost every vertex has degree d (a small set of vertices has degree $d + \delta$).
- diameter-relaxed Moore graphs.
 - Radial Moore graphs (of defect δ): regular graphs of degree d, order $M_{d,k}$, radius k and diameter $k + \delta$.

Radial Moore graphs

Definition

A regular graph G of degree d, radius k, diameter $\leq k+1$ and order $M_{d,k}=1+d+d(d-1)+\cdots+d(d-1)^{k-1}$ is called a radial Moore graph.

There are 5 non-isomorphic radial Moore graphs for d=3 and k=2.

Vertices whose eccentricity is equal to k (minimum possible) are referred to as central vertices.

Existence of radial Moore graphs

The existence of radial Moore graphs is known for the following cases:

• Radius 2 (diameter \leq 3) and any degree $d \geq$ 3.

(Exoo, Gimbert, Gomez and L. 2011)

- Radius 3 (diameter 4) and any degree d > 3.
- Radius 4 (diameter 5) and degrees d = 3, 4, 5.
- Radius 5 (diameter 6) and degree d = 3.

Conjecture

Radial Moore graphs do not exist for a bigger enough radius k and any degree d.

Local girth and the girth vector of a graph

Definition

The *girth* of a vertex v in a graph G, denoted by g(v), is the length of a shortest cycle passing through v. The vector $\mathbf{g}(G)$ constituted by the girths of all its vertices will be referred to as the *girth vector* of G.

How to measure the closeness to a Moore graph

- Every vertex v in a Moore graph of diameter k and degree d has a local girth g(v) = 2k + 1, that is, the girth vector of a Moore graph is $\mathbf{g}_{d,k} = (2k + 1, \dots, 2k + 1)$ of dimension M(d,k).
- Every vertex v in a radial Moore graph of radius k and degree d has a local girth $g(v) \le 2k + 1$ and the equality holds if v is a central vertex.

Definition

Let G = (V, E) be a radial Moore graph of degree d and radius k. We define

$$\tilde{N}(G) = \|\mathbf{g}(G) - \mathbf{g}_{d,k}\|_1 = \sum_{v \in V} (2k + 1 - g(v)).$$

as a parameter to measure the closeness to a Moore graph.

How to measure the closeness to a Moore graph: Example

• Remember: $\tilde{N}(G) = \|\mathbf{g}(G) - \mathbf{g}_{d,k}\|_1 = \sum_{v \in V} (2k + 1 - g(v))$

Definition

Let *G* be a radial Moore graph of radius *k* and degree *d*. We say that *G* has maximum local girth if $\tilde{N}(G) \leq \tilde{N}(H)$ for all radial Moore graph *H*.

Maximum local girth graphs

Theorem (Capdevila, Conde, Exoo, Gimbert and L. (2009))

The maximum local girth graphs of degree d and radius k, denoted by $G_{(d,k)}$, are the following for $(d,k) \in \{(3,2),(4,2),(3,3)\}$.

$$\mathbf{g}(G_{(4,2)}): 4^{12}, 5^5$$

 $\tilde{N}(G_{(4,2)}) = 12$

$$\mathbf{g}(G_{(3,3)}):6^{16}, 7^6$$

 $\tilde{N}(G_{(3,3)})=16$

In every case, the digraph is unique.

Table of values of $\tilde{N}(G)$

Theorem (Conde, Exoo, Gimbert and L. (2009))

There exists a radial Moore graph G_d of radius 2 and degree d > 3, such that $\mathbf{g}(G_d) : 3^{(d-1)^2}$, 5^{2d} . As a consequence, $\tilde{N}(G_d) = 2(d-1)^2$.

degree	d=3	d=4	d=5	$d \ge 6$
k = 2	0 (8)	12	32	$2(d-1)^2$
k = 3	16	106	259	?
k = 4	72	507	1442	?
k = 5	272	?		
$k \ge 6$?			

New construction for radius 2 and degree $d \ge 4$.

Proposition

For any degree $d \ge 4$, there exists a radial Moore graph H_d of radius 2 such that $\mathbf{g}(H_d): 4^{d^2-d}, 5^{d+1}$ and $\tilde{N}(H_d) = d^2 - d$.

New construction for radius 2 and degree $d \ge 4$.

Proposition

For any degree $d \ge 4$, there exists a radial Moore graph H_d of radius 2 such that $\mathbf{g}(H_d): 4^{d^2-d}, 5^{d+1}$ and $\tilde{N}(H_d) = d^2 - d$.

$$(i,j)\longleftrightarrow (\gamma,j) \ \forall i,j\in \mathbb{Z}_{d-1}$$

$$(i,j) \longleftrightarrow \left\{ \begin{array}{l} (i',j+1) \text{ if } i' > i; \\ (i',j-1) \text{ if } i' < i. \end{array} \right. \text{ for } i' \in \mathbb{Z}_{d-1} \setminus \{i\}.$$

• H_d is triangle-free.

- H_d is triangle-free.
- Every vertex in a Moore graph of radius 2 should have local girth equal to 5. Our construction have d + 1 vertices with such local girth and the remaining vertices have local girth equal to 4.

- H_d is triangle-free.
- Every vertex in a Moore graph of radius 2 should have local girth equal to 5. Our construction have d + 1 vertices with such local girth and the remaining vertices have local girth equal to 4.
- $\tilde{N}(H_d) < \tilde{N}(G_d)$ for all $d \ge 4$.

- H_d is triangle-free.
- Every vertex in a Moore graph of radius 2 should have local girth equal to 5. Our construction have d + 1 vertices with such local girth and the remaining vertices have local girth equal to 4.
- $\tilde{N}(H_d) < \tilde{N}(G_d)$ for all $d \ge 4$.
- H_3 is the Petersen graph.

- H_d is triangle-free.
- Every vertex in a Moore graph of radius 2 should have local girth equal to 5. Our construction have d + 1 vertices with such local girth and the remaining vertices have local girth equal to 4.
- $\tilde{N}(H_d) < \tilde{N}(G_d)$ for all $d \ge 4$.
- H_3 is the Petersen graph.
- H_4 is the (unique) maximum local girth graph of radius 2 and degree 4.

- H_d is triangle-free.
- Every vertex in a Moore graph of radius 2 should have local girth equal to 5. Our construction have d + 1 vertices with such local girth and the remaining vertices have local girth equal to 4.
- $\tilde{N}(H_d) < \tilde{N}(G_d)$ for all $d \ge 4$.
- H_3 is the Petersen graph.
- H_4 is the (unique) maximum local girth graph of radius 2 and degree 4.
- H_d is a minimum of \tilde{N} on the optimization process SA (Simulated Annealing).

Old values of $\tilde{N}(G)$

degree	d=3	d=4	d=5	$d \ge 6$
k = 2	0 (8)	12 [18]	32	$2(d-1)^2$
k = 3	16	106	259	?
k = 4	72	507	1442	?
k = 5	272	?		
$k \ge 6$?			

• Values given by G_d are depicted in blue color.

New values of $\tilde{N}(G)$

degree	d=3	d=4	d=5	$d \ge 6$
k = 2	0(8)	12 [18]	25 [32]	$d^2 - d \left[2(d-1)^2 \right]$
k = 3	16	106	259	?
k = 4	72	507	1442	?
k = 5	272	?		
$k \ge 6$?		• • •	

• Values given by H_d [resp. G_d] are depicted in red [blue] color.

New values of $\tilde{N}(G)$

radius	d=3	d=4	d=5	$d \ge 6$
k = 2	0(8)	12	25	d^2-d
k = 3	16	106	259	?
k = 4	72	507	1442	?
k = 5	272	?		
$k \ge 6$?			

Conjecture

 H_d is the maximum local girth graph for radius 2 and $d \ge 3$ ($d \ne 7,57$).

• Find new radial Moore graphs in order to improve the known upper bounds of $\tilde{N}(G)$.

- Find new radial Moore graphs in order to improve the known upper bounds of $\tilde{N}(G)$.
- Discover structural properties in order to find lower bounds of $\tilde{N}(G)$.

- Find new radial Moore graphs in order to improve the known upper bounds of $\tilde{N}(G)$.
- Discover structural properties in order to find lower bounds of $\tilde{N}(G)$.
- Do radial Moore graphs exist for k = 4 and $d \ge 6$?
- Do radial Moore graphs exist for k = 5 and $d \ge 4$?
- Do radial Moore graphs exist for $k \ge 6$?

- Find new radial Moore graphs in order to improve the known upper bounds of $\tilde{N}(G)$.
- Discover structural properties in order to find lower bounds of $\tilde{N}(G)$.
- Do radial Moore graphs exist for k = 4 and $d \ge 6$?
- Do radial Moore graphs exist for k = 5 and $d \ge 4$?
- Do radial Moore graphs exist for $k \ge 6$?
- Prove the uniqueness of maximum local girth graphs.