DOMINATION AND ROMAN DOMINATION IN SOME PRODUCT GRAPHS

ISMAEL GONZALEZ YERO

Departamento de Matemáticas, Universidad de Cádiz - Escuela Politécnica Superior de Algeciras, Av. Ramón Puyol s/n, 11202 Algeciras, España E-mail: ismael.gonzalez@uca.es

Joint work with D. Kuziak and J. A. Rodríguez-Velázquez

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Cartesian product graphs

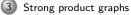
3 Strong product graphs

Rooted product graphs

1 Introduction

2 Cartesian product graphs

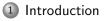
2 Cartesian product graphs



Index

- 2 Cartesian product graphs
- 3 Strong product graphs

Rooted product graphs



- 2) Cartesian product graphs
- 3 Strong product graphs
- 4 Rooted product graphs

• G = (V, E), a simple graph. $S \subset V$, set of vertices of G.

- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: *k*-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

- G = (V, E), a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: *k*-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

- G = (V, E), a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: *k*-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

- G = (V, E), a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: *k*-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

- G = (V, E), a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

- G = (V, E), a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: *k*-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

Э

ヘロト 人間ト 人注ト 人注ト

- G = (V, E), a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: *k*-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

イロト イポト イヨト イヨト 二日

- G = (V, E), a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if N(S) = V, *i.e.*, every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: *k*-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.

イロト イポト イヨト イヨト 二日

- A map f : V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$

- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

- A map f : V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$

- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

- A map f : V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- γ_R(G), Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$

- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

- A map f : V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$

- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

- A map f : V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$

- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

- A map f: V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$
- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

◆ロト ◆国ト ◆臣ト ◆臣ト 三臣

- A map f: V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$
- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

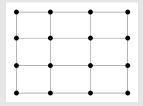
< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

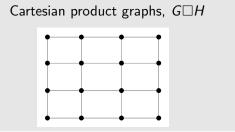
- A map f: V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$
- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

- A map f: V → {0,1,2}, Roman dominating function for G, if for every v ∈ V with f(v) = 0 there exists u ∈ N(v) such that f(u) = 2.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}.$
- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).

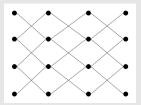
《曰》《卽》《臣》《臣》 [] 臣 []

Cartesian product graphs, $G\Box H$



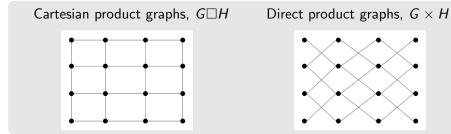


Direct product graphs, $G \times H$

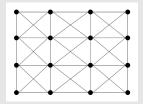


Э

글 눈 옷 글 눈 ...

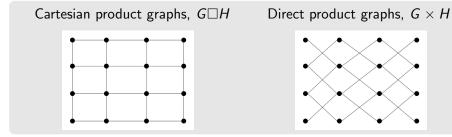


Strong product graphs, $G \boxtimes H$

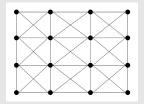


Э

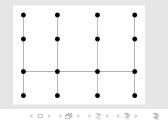
문 > < 문 >



Strong product graphs, $G \boxtimes H$



Rooted product graphs, $G \circ H$



Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

Roman domination

- $\gamma_R(G\Box H) \geq \gamma(G)\gamma(H)$.
 - There were no more results in this topic.
- So, we did it

Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

Roman domination

- $\gamma_R(G\Box H) \geq \gamma(G)\gamma(H)$.
 - There were no more results in this topic.
- So, we did it

Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

Roman domination

- $\gamma_R(G\Box H) \geq \gamma(G)\gamma(H)$.
 - There were no more results in this topic.
- So, we did it

イロト イポト イヨト イヨト

Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

Roman domination

```
• \gamma_R(G\Box H) \geq \gamma(G)\gamma(H).
```

- There were no more results in this topic.
- So, we did it.

3

Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

Roman domination

- $\gamma_R(G\Box H) \geq \gamma(G)\gamma(H).$
- There were no more results in this topic.

• So, we did it.

igyero (EPS-UCA)

3

イロト イポト イヨト イヨト

Domination versus product graphs

Vizing's conjecture

- One of the most important problems about domination in graphs: $\gamma(G \Box H) \geq \gamma(G)\gamma(H)$.
- Several Vizing-like results for other domination (also not domination related) parameters.
- $\Gamma(G \Box H) \ge \Gamma(G)\Gamma(H), \ \gamma(G \times H) \le 3\gamma(G)\gamma(H), \ \gamma(G \boxtimes H) \le \gamma(G)\gamma(H), \text{ etc.}$
- The best approximation to Vizing's conjecture: $2\gamma(G\Box H) \ge \gamma(G)\gamma(H)$ (Clark and Suen).

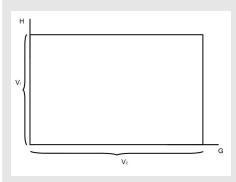
Roman domination

- $\gamma_R(G\Box H) \geq \gamma(G)\gamma(H).$
- There were no more results in this topic.
- So, we did it.

3

2 Cartesian product graphs

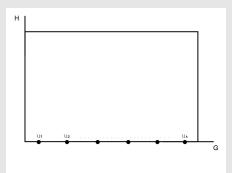
- 3 Strong product graphs
- 4 Rooted product graphs



• V₁ and V₂, the vertex sets of G and H, respectively.

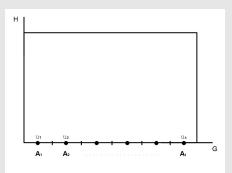
ヘロト 人間ト 人団ト 人団ト

igyero (EPS-UCA)



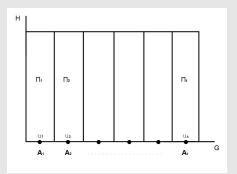
- V₁ and V₂, the vertex sets of G and H, respectively.
- S = {u₁,..., u_t}, a dominating set for G, t = γ(G).

イロト イロト イヨト イヨト



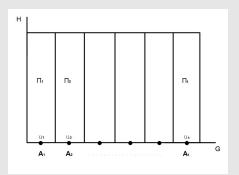
- V₁ and V₂, the vertex sets of G and H, respectively.
- $S = \{u_1, ..., u_t\}$, a dominating set for G, $t = \gamma(G)$.
- $\Pi = \{A_1, A_2, ..., A_{\gamma(G)}\}$, a vertex partition of *G* such that $u_i \in A_i$ and $A_i \subseteq N[u_i]$

イロト 不得下 イヨト イヨト



• { $\Pi_1, \Pi_2, ..., \Pi_{\gamma(G)}$ }, a vertex partition of $G \Box H$, such that $\Pi_i = A_i \times V_2$ for every $i \in \{1, ..., \gamma(G)\}$

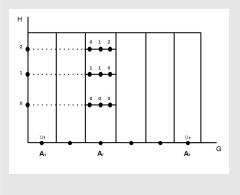
イロト イポト イヨト イヨト



• { $\Pi_1, \Pi_2, ..., \Pi_{\gamma(G)}$ }, a vertex partition of $G \Box H$, such that $\Pi_i = A_i \times V_2$ for every $i \in \{1, ..., \gamma(G)\}$

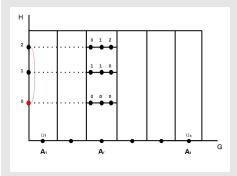
イロト イポト イヨト イヨト

• $f = (B_0, B_1, B_2)$, a $\gamma_R(G \Box H)$ -function

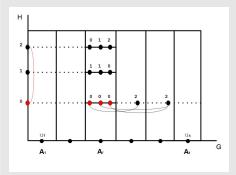


- { $\Pi_1, \Pi_2, ..., \Pi_{\gamma(G)}$ }, a vertex partition of $G \Box H$, such that $\Pi_i = A_i \times V_2$ for every $i \in \{1, ..., \gamma(G)\}$
- $f = (B_0, B_1, B_2)$, a $\gamma_R(G \Box H)$ -function
- For every $i \in \{1, ..., \gamma(G)\}$, $f_i : V_2 \rightarrow \{0, 1, 2\}$, a function on H such that $f_i(v) =$ máx $\{f(u, v) : u \in A_i\}$.

ヘロト 人間ト 人注ト 人注ト

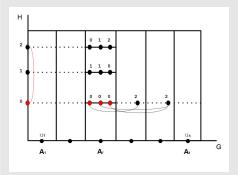


• $f_i = (X_0^{(i)}, X_1^{(i)}, X_2^{(i)})$, not a Roman dominating function for H, there is a vertex $v \in \overline{X_0^{(i)}}$, $N(v) \cap X_2^{(i)} = \emptyset$.



• $f_i = (X_0^{(i)}, X_1^{(i)}, X_2^{(i)})$, not a Roman dominating function for H, there is a vertex $v \in \overline{X_0^{(i)}}$, $N(v) \cap X_2^{(i)} = \emptyset$.

回下 イヨト イヨト



- $f_i = (X_0^{(i)}, X_1^{(i)}, X_2^{(i)})$, not a Roman dominating function for H, there is a vertex $v \in \overline{X_0^{(i)}}$, $N(v) \cap X_2^{(i)} = \emptyset$.
- For every u ∈ A_i, (u, v) is adjacent to some vertex not in Π_i

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For every i ∈ {1,..., γ(G)}, we count the number of vertices of H satisfying that they are not adjacent to any vertex with label two (2).

- For every i ∈ {1,..., γ(G)}, we count the number of vertices of H satisfying that they are not adjacent to any vertex with label two (2).
- For every vertex v of H we count the G-cells satisfying that all their vertices are not adjacent to any vertex with label two (2) in the same "column".

- For every i ∈ {1,..., γ(G)}, we count the number of vertices of H satisfying that they are not adjacent to any vertex with label two (2).
- For every vertex v of H we count the G-cells satisfying that all their vertices are not adjacent to any vertex with label two (2) in the same "column".
- By doing a double sum we get that

$$\gamma_R(G\Box H) \geq \frac{2}{3}\gamma(G)\gamma_R(H)$$

The general bound

For any graphs G and H,

$$\gamma_R(G\Box H) \geq rac{2}{3}\gamma(G)\gamma_R(H).$$

The general bound

For any graphs G and H,

$$\gamma_R(G\Box H) \geq \frac{2}{3}\gamma(G)\gamma_R(H).$$

If
$$\gamma_R(H) > \frac{3\gamma(H)}{2}$$
, then

$$\gamma(G\Box H) \geq \frac{\gamma(G)\gamma(H)}{2} + \frac{\gamma(G)}{3}$$

E

イロト イロト イヨト イヨト

The general bound

For any graphs G and H,

$$\gamma_R(G\Box H) \geq \frac{2}{3}\gamma(G)\gamma_R(H).$$

If
$$\gamma_R(H) > \frac{3\gamma(H)}{2}$$
, then

$$\gamma(G\Box H) \geq \frac{\gamma(G)\gamma(H)}{2} + \frac{\gamma(G)}{3}$$

For any graph G and any Roman graph H,

•
$$\gamma_R(G\Box H) \ge \frac{4}{3}\gamma(G)\gamma(H).$$

• $\gamma(G\Box H) \ge \frac{2}{3}\gamma(G)\gamma(H).$

Э

イロト 不得下 イヨト イヨト

Index

3 Strong product graphs

• $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$ -function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$ -function. Then,

• $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$ -function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$ -function. Then,

 $\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へへ

• $f_1 = (A_0, A_1, A_2), \gamma_R(G)$ -function. $f_2 = (B_0, B_1, B_2), \gamma_R(H)$ -function. Then,

$$\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.$$

Idea of the proof

f on $G \boxtimes H$ defined as

$$f(u,v) = \begin{cases} 2, & (u,v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\ 1, & (u,v) \in A_1 \times B_1, \\ 0, & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ● ◎ ● ● ●

• $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$ -function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$ -function. Then,

$$\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.$$

Idea of the proof

f on $G \boxtimes H$ defined as

$$f(u,v) = \begin{cases} 2, & (u,v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\ 1, & (u,v) \in A_1 \times B_1, \\ 0, & \text{otherwise.} \end{cases}$$

• $(A_0 \times B_0) \cup (A_0 \times B_2) \cup (A_2 \times B_0)$ is dominated by $A_2 \times B_2$,

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 </p>

• $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$ -function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$ -function. Then,

$$\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.$$

Idea of the proof

f on $G \boxtimes H$ defined as

$$f(u,v) = \begin{cases} 2, & (u,v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\ 1, & (u,v) \in A_1 \times B_1, \\ 0, & \text{otherwise.} \end{cases}$$

(A₀ × B₀) ∪ (A₀ × B₂) ∪ (A₂ × B₀) is dominated by A₂ × B₂,
A₁ × B₀ is dominated by A₁ × B₂ and

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 </p>

• $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$ -function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$ -function. Then,

$$\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.$$

Idea of the proof

f on $G \boxtimes H$ defined as

$$f(u,v) = \begin{cases} 2, & (u,v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\ 1, & (u,v) \in A_1 \times B_1, \\ 0, & \text{otherwise.} \end{cases}$$

• $(A_0 \times B_0) \cup (A_0 \times B_2) \cup (A_2 \times B_0)$ is dominated by $A_2 \times B_2$,

- $A_1 \times B_0$ is dominated by $A_1 \times B_2$ and
- $A_0 \times B_1$ is dominated by $A_2 \times B_1$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 </p>

• $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$ -function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$ -function. Then,

$$\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.$$

Idea of the proof

f on $G \boxtimes H$ defined as

$$f(u,v) = \begin{cases} 2, & (u,v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\ 1, & (u,v) \in A_1 \times B_1, \\ 0, & \text{otherwise.} \end{cases}$$

• $(A_0 \times B_0) \cup (A_0 \times B_2) \cup (A_2 \times B_0)$ is dominated by $A_2 \times B_2$,

- $A_1 \times B_0$ is dominated by $A_1 \times B_2$ and
- $A_0 \times B_1$ is dominated by $A_2 \times B_1$.
- f is a Roman dominating function on $G \boxtimes H$.

イロト 不得 とくき とくき とうき

Index

- 3 Strong product graphs

④ Rooted product graphs

Domination

 G, graph of order n ≥ 2. H, graph with root v and at least two vertices. If v does not belong to any γ(H)-set or v belongs to every γ(H)-set, then

$$\gamma(G \circ H) = n\gamma(H).$$

3

Domination

 G, graph of order n ≥ 2. H, graph with root v and at least two vertices. If v does not belong to any γ(H)-set or v belongs to every γ(H)-set, then

$$\gamma(G \circ H) = n\gamma(H).$$

 G, graph of order n ≥ 2. Then for any graph H with root v and at least two vertices,

$$\gamma(G \circ H) \in \{n\gamma(H), n(\gamma(H) - 1) + \gamma(G)\}.$$

 G, graph of order n ≥ 2. Then for any graph H with root v and at least two vertices,

$$n(\gamma_R(H)-1)+\gamma(G)\leq \gamma_R(G\circ H)\leq n\gamma_R(H).$$

э

《曰》 《圖》 《臣》 《臣》

 G, graph of order n ≥ 2. Then for any graph H with root v and at least two vertices,

$$n(\gamma_R(H)-1)+\gamma(G)\leq \gamma_R(G\circ H)\leq n\gamma_R(H).$$

Tightness of the bounds

• If for every $\gamma_R(H)$ -function $f = (B_0, B_1, B_2)$ is satisfied that f(v) = 0, then

 $\gamma_R(G \circ H) = n\gamma_R(H).$

3

▲ロト ▲圖ト ▲ ヨト ▲ ヨト ---

 G, graph of order n ≥ 2. Then for any graph H with root v and at least two vertices,

$$n(\gamma_R(H)-1)+\gamma(G)\leq \gamma_R(G\circ H)\leq n\gamma_R(H).$$

Tightness of the bounds

• If for every $\gamma_R(H)$ -function $f = (B_0, B_1, B_2)$ is satisfied that f(v) = 0, then

$$\gamma_R(G \circ H) = n\gamma_R(H).$$

• If there exist two $\gamma_R(H)$ -functions $h = (B_0, B_1, B_2)$ and $h' = (B'_0, B'_1, B'_2)$ such that h(v) = 1 and h'(v) = 2, then

$$\gamma_R(G \circ H) = n(\gamma_R(H) - 1) + \gamma(G).$$

Ξ

ヘロト 人間ト 人注ト 人注ト

 G, graph of order n ≥ 2 and H, graph with root v and at least two vertices.

<ロト < 団ト < 団ト < 団ト < 団ト = 三</p>

- G, graph of order $n \ge 2$ and H, graph with root v and at least two vertices.
- If for every $\gamma_R(H)$ -function f is satisfied that f(v) = 1, then

$$\gamma_R(G \circ H) = n(\gamma_R(H) - 1) + \gamma_R(G).$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thanks

THANKS!!!

<ロ> < 団 > < 団 > < 団 > < 団 > < 団 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □