The counter-example(s) 00000000000 Asymptotic diameter

Simplicial complexes

Connected layer families

How false is the Hirsch Conjecture?

Francisco Santos http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

VIII JMDA, Almería — July 12, 2012

The counter-example(s

Asymptotic diameter

Simplicial complexes

Connected layer families

HOW The GRINCH STOLE CHRISTMAS

narrated by Boris Karloff

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Polyhedra and polytopes

Definition

A (convex) polyhedron *P* is the intersection of a finite family of affine half-spaces in \mathbb{R}^d .

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Polyhedra and polytopes

Definition

A (convex) polytope *P* is the convex hull of a finite set of points in \mathbb{R}^d .

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Polyhedra and polytopes

Polytope = bounded polyhedron.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Polyhedra and polytopes

Polytope = bounded polyhedron.

0000000	00000000000	0000000	0000000	00000000	
Faces of P					

 $H = \{x \in \mathbb{R}^d : a_1 x_1 + \cdots + a_d x_d \leq a_0\}$

4

Let P be a polytope (or polyhedron) and let

be an affine half-space.

0000000		0000000	0000000		
Econo of P					

 $H = \{x \in \mathbb{R}^d : a_1 x_1 + \cdots + a_d x_d \leq a_0\}$

be an affine half-space.

If $P \subset H$ we say that $\partial H \cap P$ is a face of P.

Let P be a polytope (or polyhedron) and let

The conjecture	The counter-example(s)	Asymptotic diameter
0000000	0000000000	0000000

Simplicial complexes

Connected layer families

Faces of P

Faces of P

Faces of dimension 0 are called vertices.

Faces of P

Faces of dimension 1 are called edges.

000000000000000000000000000000000000000	0000000000	0000000	000000	0000000
The conjecture	he counter-example(s)	Asymptotic diameter	Simplicial complexes	Connected layer families

Faces of P

Faces of dimension d - 1 (codimension 1) are called facets.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The graph of a polytope

Vertices and edges of a polytope *P* form a (finite, undirected) graph.

The distance d(u, v) between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The graph of a polytope

Vertices and edges of a polytope *P* form a (finite, undirected) graph.

The distance d(u, v) between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The graph of a polytope

Vertices and edges of a polytope *P* form a (finite, undirected) graph.

The distance d(u, v) between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The graph of a polytope

Vertices and edges of a polytope *P* form a (finite, undirected) graph.

The diameter of G(P) (or of P) is the maximum distance among its vertices:

$$\delta(\boldsymbol{P}) := \max\{\boldsymbol{d}(\boldsymbol{u},\boldsymbol{v}) : \boldsymbol{u},\boldsymbol{v} \in \boldsymbol{V}\}.$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

polytope	faces	dimension	n-d	diameter
cube	6	3	3	3
dodecahedron	12	3	9	5
octahedron	8	3	5	2
<i>k</i> -prism	<i>k</i> + 2	3	<i>k</i> – 1	$\lfloor k/2 \rfloor + 1$
<i>n</i> -cube	2 <i>n</i>	п	п	п

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope *P*.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

polytope	faces	dimension	n-d	diameter
cube	6	3	3	3
dodecahedron	12	3	9	5
octahedron	8	3	5	2
<i>k</i> -prism	<i>k</i> + 2	3	<i>k</i> – 1	$\lfloor k/2 \rfloor + 1$
<i>n</i> -cube	2 <i>n</i>	п	п	п

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope *P*.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$\delta(P) \leq n-d.$

polytope	faces	dimension	n-d	diameter
cube	6	3	3	3
dodecahedron	12	3	9	5
octahedron	8	3	5	2
<i>k</i> -prism	<i>k</i> + 2	3	<i>k</i> – 1	$\lfloor k/2 \rfloor + 1$
<i>n</i> -cube	2 <i>n</i>	п	п	п

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope *P*.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(P) \leq n-d.$

polytope	faces	dimension	n-d	diameter
cube	6	3	3	3
dodecahedron	12	3	9	5
octahedron	8	3	5	2
<i>k</i> -prism	<i>k</i> + 2	3	<i>k</i> – 1	$\lfloor k/2 floor+1$
<i>n</i> -cube	2 <i>n</i>	п	п	n

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty three years later...

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(P) \leq n - d.$

Fifty three years later...

Theorem (S. 2010+)

There is a 43-dim. polytope with 86 facets and diameter \geq 44.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty four years later...

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(P) \leq n - d.$

Fifty four years later...

Theorem (Matschke-S.-Weibel 2011+)

There is a 20-dim. polytope with 40 facets and diameter \geq 21.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty five years later...

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty five years later...

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope *P*.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty five years later...

"Polynomial Hirsch Conjecture"

Is there a polynomial upper bound for $\delta(P)$? Is $\delta(P) \le 2(n-d)$ a valid upper bound????

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope *P*.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty five years later...

"Polynomial Hirsch Conjecture"

Is there a polynomial upper bound for $\delta(P)$? Is $\delta(P) \leq 2(n-d)$ a valid upper bound????

Asymptotic diameter

Simplicial complexes

Connected layer families

- The set of feasible solutions $P = \{x \in \mathbb{R}^d : Mx \le b\}$ is a polyhedron *P* with (at most) *n* facets and *d* dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

Simplicial complexes

Connected layer families

- The set of feasible solutions $P = \{x \in \mathbb{R}^d : Mx \le b\}$ is a polyhedron *P* with (at most) *n* facets and *d* dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

00000000

- The set of feasible solutions $P = \{x \in \mathbb{R}^d : Mx \le b\}$ is a polyhedron *P* with (at most) *n* facets and *d* dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear
- In particular, the Hirsch conjecture is related to the

Connected layer families

- The set of feasible solutions P = {x ∈ ℝ^d : Mx ≤ b} is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).
Connected layer families

Motivation: linear programming

- The set of feasible solutions P = {x ∈ ℝ^d : Mx ≤ b} is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

The counter-example(s

Asymptotic diameter

Simplicial complexes

Connected layer families

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But:

The counter-example(s 00000000000 Asymptotic diameter

Simplicial complexes

Connected layer families

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But:

The counter-example(s

Asymptotic diameter

Simplicial complexes

Connected layer families

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But:

The number of pivot steps [that the simplex method takes] to solve a problem with m equality constraints in n nonnegative variables is almost always at most a small multiple of m, say 3m.

(M. Todd, 2011)

The counter-example(s

Asymptotic diameter

Simplicial complexes

Connected layer families

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But:

The number of pivot steps [that the simplex method takes] to solve a problem with m equality constraints in nonnegative variables is almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method of choice, a method of choice, usually competitive with, and on some classes of problems superior to, the more modern approaches.

(M. Todd, 2011)

The counter-example(s) ••••••• Asymptotic diameter

Simplicial complexes

Connected layer families

What do we know?

Conjecture: Warren M. Hirsch (1957)

For every polytope *P* with *n* facets and dimension *d*,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \quad \forall n, d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

11

The counter-example(s) ••••••• Asymptotic diameter

Simplicial complexes

Connected layer families

What do we know?

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \quad \forall n, d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

11

The counter-example(s) ••••••• Asymptotic diameter

Simplicial complexes

Connected layer families

What do we know?

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

 $\delta(P) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

$$H(n, d) \leq n^{\log_2 d+2}, \quad \forall n, d.$$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

11

The counter-example(s) ••••••• Asymptotic diameter

Simplicial complexes

Connected layer families

What do we know?

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

 $\delta(P) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

$$H(n,d) \leq n^{\log_2 d+2}, \quad \forall n, d.$$

Theorem [Barnette 1967, Larman 1970]

$$H(n,d) \leq n2^{d-3}, \quad \forall n,d.$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The *d*-step Theorem

Theorem (Klee-Walkup, 1967)

Let *P* be a polytope of dimension *d*, with *n* facets and diameter δ . Then there is another polytope *P'* of dimension *d* + 1, with n + 1 facets and diameter $\geq \delta$.

Corollary (d-step theorem)

For each $n > d \in \mathbb{N}$, let H(n, d) denote the maximum diameter among d-polytopes with n facets. Then

 $H(n,d) \leq H(2n-2d,n-d).$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The *d*-step Theorem

Theorem (Klee-Walkup, 1967)

Let P be a polytope of dimension d, with n facets and diameter δ . Then there is another polytope P' of dimension d + 1, with n + 1 facets and diameter $\geq \delta$.

Corollary (*d*-step theorem)

For each $n > d \in \mathbb{N}$, let H(n, d) denote the maximum diameter among d-polytopes with n facets. Then

 $H(n,d) \leq H(2n-2d,n-d).$

The conjecture The conjecture Chief Conjecture Chief C

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Wedging, a.k.a. one-point-suspension

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Wedging, a.k.a. one-point-suspension

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The construction

- A strong d-step theorem for prismatoids.
- The construction of a prismatoid of dimension 5 and "width" 6.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The construction

- A strong *d*-step theorem for prismatoids.
- The construction of a prismatoid of dimension 5 and "width" 6.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The construction

- A strong *d*-step theorem for prismatoids.
- 2 The construction of a prismatoid of dimension 5 and "width" 6.

The	conje	cture
00000000		

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The construction

- A strong *d*-step theorem for prismatoids.
- The construction of a prismatoid of dimension 5 and "width" 6.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Prismatoids

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Prismatoids

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Prismatoids

Theorem (Strong *d*-step theorem, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d vertices, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture. conjectureThe counter-example(s)A00000000000

Asymptotic diameter

Simplicial complexes

Connected layer families

Prismatoids

Theorem (Strong *d*-step theorem, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d vertices, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture. Simplicial comp

Connected layer families

Prismatoids

Theorem (Strong *d*-step theorem, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d vertices, and width $\ge \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

The strong *d*-step Theorem

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. Its number of vertices and facets is irrelevant...

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A 5-prismatoid of width > 5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A 5-prismatoid of width > 5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

$$Q := \operatorname{conv} \left\{ \begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ (\pm 18 & 0 & 0 & 0 & 1 \\ 0 & \pm 18 & 0 & 0 & 1 \\ 0 & \pm 18 & 0 & 0 & 1 \\ 0 & 0 & \pm 45 & 0 & 1 \\ \pm 15 & \pm 15 & 0 & 0 & 1 \\ 0 & 0 & \pm 30 & \pm 30 & 1 \\ 0 & \pm 10 & \pm 40 & 0 & 1 \\ \pm 10 & 0 & 0 & \pm 40 & 1 \end{array} \right) \qquad \begin{array}{c} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & 0 & \pm 18 & -1 \\ 0 & 0 & \pm 18 & 0 & -1 \\ \pm 45 & 0 & 0 & 0 & -1 \\ 0 & 0 & \pm 15 & \pm 15 & -1 \\ \pm 30 & \pm 30 & 0 & 0 & -1 \\ \pm 40 & 0 & \pm 10 & 0 & -1 \\ 0 & \pm 40 & 0 & \pm 10 & -1 \\ \end{array} \right)$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A 5-prismatoid of width > 5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter (at least) 44.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-Santos-Weibel, 2011)

There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices, and diameter 21.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-Santos-Weibel, 2011)

There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices, and diameter 21.
The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-Santos-Weibel, 2011)

There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices, and diameter 21.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

O O O Opoly20dim21.ext																				
V-rep	resentati	on																		Т
begir																				
40.2	1 rationa	1																		
1 1	0	0	21	8	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	
1 1	8	8	16	-8	8	8	8	U	8	8	8	8	8	8	8	1	1	8	8	
1 1	0	0		-25	0	0	0	0	0	0	8	8	0	0	6	0	1	1	6	
1 1			-10	-10	0	0	0	0	0	0	0	0			0		0	1	1	
1 1	0		-21	2		0	0	0	0			0	0		0	0	0			
1 1	8		-20	30	, e	ě	ă	e e	e e	e e	o a	o a		0		e e		e e	0 0	
1 1	Ř	Ř	19	2	ñ	e e	ด้	A	, A	e e e	о А	о А	Å	Å.	ด้	ñ	ñ	A	ค	
1 1	3/188	-1/58	6	-23	8	ñ	8	ด้	ñ	ñ	ñ	ñ	ค	ñ	ñ	ค	ñ	ñ	8	
1 1	-3/100	-1/50	ē	37	ē	é	ē	é	é	ē	ē	ē	ē	é	ē	ē	ē	ē	ē	
1 1	-3/2000	7/2000	0	388/18	8	0	8	0	9	0	9	9	0	1	8	0	8	8	0	
1 1	3/2000	7/2000	8	-248/18	10000000	10000000	10000000	10000000000	100000000000	1000000000000	1000000000000	100000000000	1	8	0	0	8	8	0	
1 1	3/2000	7/2000	9	-248/18	-10000000	9	8	0	9	9	9	8	1	9	8	9	9	8	9	
1 1	3/2000	7/2000	0	-248/18	10000000	-10000000	0	0	9	0	0	6	1	0	0	0	0	8	0	
1 1	3/2000	7/2000	9	-248/18	10000000	10000000	-10000000	0	8	0	8	8	1	8	0	9	9	8	0	
1 1	3/2000	7/2000	9	-248/18	10000000	10000000	100000000	-10000000000	9	9	9	9	1	9	8	9	9	9	9	
1 1	3/2000	7/2000	0	-248/10	10000000	10000000	10000000	10000000000	-100000000000	0	8	6	1	6	0	0	0	6	0	
1 1	3/2000	7/2000	9	-248/18	10000000	10000000	100000000	10000000000	1000000000000	-1000000000000	0	8	1	8	8	9	9	8	9	
1 1	3/2000	7/2000	0	-248/10	10000000	10000000	10000000	10000000000	100000000000	1000000000000	-1000000000000	8	1	9	9	0	9	8	0	
1 1	3/2000	7/2000	0	-248/18	10000000	10000000	10000000	10000000000	100000000000	1000000000000	1000000000000	-100000000000	1	0	0	0	0	0	0	
1 -1	30	45	0		0	0	1	1	0	0	0	0				0	0	0		
1 1		22/2			0	0	0	-	1	0	0	0	0	0	0	0	0	0	0	
1 -1		-30/2			0	0	0	0	1	1	0	0	0		0	0	0	0	0	
1 1	EE /2	-10	6	ä					0	1	1	0	6		0	0	0			
1 -1	-17	18		ä		8	8	6	e e	9	â	1	8	8		ñ	e e	e	0	
1 -1	9	38	ē	ā	ē	é	ē	ē	é	é	ē	ē	ē	é	ē	ē	ē	ē	ē	
1 -1	22	17	0	6	0	0	8	0	0	0	0	9	0	6	0	0	0	6	0	
1 -1	-10	Ð	1/5	-1/5	ē	ė	ē	ē	é	ē	ē	0	ē	é	ē	ē	ē	ē	ē	
1 -1	2999/188	9	-3/25	-1/5	9	9	1	0	9	9	9	9	9	9	8	9	9	8	9	
1 -1	2999999/18	0 609	0	1/100	0	1	8	0	8	0	8	8	0	8	8	0	0	6	0	
1 -1	-2745/100	I 0	1/5000	1/800	1	8	8	0	9	0	8	8	9	8	8	9	9	8	9	
1 -1	-27	0	1/580	-1/88	8	0	8	0	9	0	9	9	100000	10000000	10000000	10000000	100000000	100000000	1000000000	
1 -1	-27	9	1/500	-1/88	0	0	8	0	9	0	8	8	-108080	8	8	9	9	6	0	
1 -1	-27	9	1/580	-1/88	9	0	8	0	9	0	8	8	100000	-10000000	9	9	9	9	9	
1 -1	-27	0	1/580	-1/88	0	0	0	0	0	0	0	0	100000	10000000	-10000000	0	0	0	0	
1 -1	-27	0	1/580	-1/88	0	8	8	0	0	0	0	0	100000	160999999	100000000	-100000000	8	0	0	
1 -1	-27	9	1/588	-1/88	8	8	8	8	9	8	8	8	100000	1000000000	100000000	100000000	-1000000000	8	8	
1 -1	-27	0	1/500	-1/88	0	0	0	0	0	0	8	8	100000	100000000	10000000	10000000	100000000	-100000000	1000000000	
and	-27	0	1/ 200	-1/00	0	0	0	0	0	0	0	0	100000	100000000	10000000	100000000	1000000000	100000000	-1000300000	
allbo	1505																			
nrint	cohasis																			
MANNAMAN.													1							

Simplicial complexes

Connected layer families

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- 2 Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Simplicial complexes

Connected layer families

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- 2 Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
 - 2 Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- ② Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- ② Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20} = 5\%.$$

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- ② Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20*k* with 40*k* facets and with excess equal to 0.05 = 5%.
- 2 Gluing several copies (slightly) decreases the excess.

 conjecture
 The counter-example(s)
 Asymptotic diameter

 0000000
 000000000
 0000000

Simplicial complexes

Connected layer families

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40k facets and with excess equal to 0.05 = 5%.
- 2 Gluing several copies (slightly) decreases the excess.

 The conjecture
 The counter-example(s)
 Asymptotic diameter
 Simplicial complexes

 00000000
 00000000
 0000000
 0000000
 0000000

Connected layer families

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40k facets and with excess equal to 0.05 = 5%.
- Gluing several copies (slightly) decreases the excess.

 The conjecture
 The counter-example(s)
 Asymptotic diameter
 Simplicial co

 00000000
 00000000
 0000000
 0000000
 0000000

Connected layer families

Many non-Hirsch polytopes

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40k facets and with excess equal to 0.05 = 5%.
- Is Gluing several copies (slightly) decreases the excess.

 $\frac{\delta_1}{n_1-d} - 1 = \frac{\delta_2}{n_2-d} - 1 = \epsilon \qquad \Rightarrow \qquad \frac{\delta}{n-d} - 1 = \epsilon - \frac{1}{(n_1-d)+(n_2-d)}.$

- **1** Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40kfacets and with excess equal to 0.05 = 5%.
- In the excess of the excess.

$$\frac{\delta_1}{n_1-d}-1=\frac{\delta_2}{n_2-d}-1=\epsilon \qquad \Rightarrow \qquad \frac{\delta}{n-d}-1=\epsilon-\frac{1}{(n_1-d)+(n_2-d)}.$$

Many non-Hirsch polytopes

- **1** Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40k facets and with excess equal to 0.05 = 5%.
- In the excess of the excess.

Corollary

For each $k \in \mathbb{N}$ there is an infinite family of non-Hirsch polytopes of fixed dimension 20k and with excess (tending to)

$$0.05\left(1-\frac{1}{k}
ight)$$

Simplicial complexes

Connected layer families

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

$$\frac{\delta - d}{n - d}$$

Simplicial complexes

Connected layer families

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

$$\frac{\delta - d}{n - d}$$

Simplicial complexes

Connected layer families

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

 $\frac{\delta - d}{n - d}$

Simplicial complexes

Connected layer families

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

$$\frac{\delta-d}{n-d}$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong *d*-step Theorem are

$$n-d$$
, $2(n-d)$, $\delta + (n-2d)$.

So, its excess is

$$\frac{\delta + (n-2d) - (n-d)}{n-d} = \frac{\delta - d}{n-d}.$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong *d*-step Theorem are

$$n-d$$
, $2(n-d)$, $\delta + (n-2d)$.

So, its excess is

$$\frac{\delta + (n-2d) - (n-d)}{n-d} = \frac{\delta - d}{n-d}.$$

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong *d*-step Theorem are

$$n-d$$
, $2(n-d)$, $\delta + (n-2d)$.

So, its excess is

$$\frac{\delta + (n-2d) - (n-d)}{n-d} = \frac{\delta - d}{n-d}.$$

Simplicial complexes

Connected layer families

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta - 5}{n - 5} = \lim \frac{\sqrt{n - 5}}{n - 5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

Simplicial complexes

Connected layer families

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

Simplicial complexes

Connected layer families

Prismatoids of large width won't help (much)

OK, can we be *more* optimistic? Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

Simplicial complexes

Connected layer families

Prismatoids of large width won't help (much)

OK, can we be *more* optimistic? Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

OK, can we be *more* optimistic? Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

OK, can we be *more* optimistic? Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

OK, can we be *more* optimistic? Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot exceed n/3 + 1.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot exceed n/3 + 1.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot exceed n/3 + 1.

Corollary

Using the Strong d-step Theorem for 5-prismatoids it is impossible to violate the Hirsch conjecture by more than 33%.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

If you cannot prove it, generalize it...

29

More general setting

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

• Strongly connected pure simplicial complexes. $H_C(n, d)$

- Pseudo-manifolds (w. or wo. bdry). $H_{pm}(n, d), H_{pm}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $H_{\overline{M}}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls).

 $H_{\overline{M}}(n,d), H_{M}(n,d)$ $H_{c}(n,d), H_{B}(n,d)$

• . . .

Remark, in all definitions of $H_{\bullet}(n, d)$, *n* is the number of vertices and d - 1 is the dimension.
Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_C(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $H_{pm}(n, d), H_{pm}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $H_{\overline{M}}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls).

• . . .

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_C(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $H_{pm}(n, d), H_{pm}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $H_{\overline{M}}(n, d)$, *I*
- Simplicial spheres (or balls).

 $H_{\overline{M}}(n, d), H_{M}(n, d)$

• . . .

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_C(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $H_{\overline{pm}}(n, d), H_{pm}(n, d)$
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

 $H_{\overline{M}}(n,d), H_{M}(n,d)$ $H_{S}(n,d), H_{B}(n,d),$

• • • • •

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

• Strongly connected pure simplicial complexes. $H_C(n, d)$

 $H_{\overline{M}}(n,d), H_{M}(n,d)$

 $H_{\rm S}(n,d), H_{\rm B}(n,d),$

- Pseudo-manifolds (w. or wo. bdry). $H_{\overline{pm}}(n, d), H_{pm}(n, d)$
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

• . . .

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

• Strongly connected pure simplicial complexes. $H_C(n, d)$

 $H_{\rm S}(n,d), H_{\rm B}(n,d),$

- Pseudo-manifolds (w. or wo. bdry). $H_{\overline{pm}}(n, d), H_{pm}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $H_{\overline{M}}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls).

• . . .

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Some easy remarks and a toy example

There are the following relations:

$$\begin{array}{rclcrcl} H_{\mathcal{C}}(n,d) & = & H_{\overline{pm}}(n,d) & \geq & H_{\overline{M}}(n,d) & \geq & H_{\mathcal{B}}(n,d) \\ & & & VI & & VI \\ & & & H_{pm}(n,d) & \geq & H_{\mathcal{M}}(n,d) & \geq & H_{\mathcal{S}}(n,d) \end{array}$$

In dimension one (graphs):

 $H_C(n,2) = H_{\overline{pm}}(n,2) = H_{\overline{M}}(n,2) = H_B(n,2) = n-1,$

$$H_{pm}(n,2) = H_M(n,2) = H_S(n,2) = \left\lfloor \frac{n}{2} \right\rfloor,$$

ne conjecture The

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Some easy remarks and a toy example

There are the following relations:

$$egin{array}{rcl} H_{C}(n,d) &=& H_{\overline{pm}}(n,d) &\geq& H_{\overline{M}}(n,d) &\geq& H_{B}(n,d) \ VI && VI && VI \ H_{pm}(n,d) &\geq& H_{M}(n,d) &\geq& H_{S}(n,d) \end{array}$$

In dimension one (graphs):

$$H_{C}(n,2) = H_{\overline{pm}}(n,2) = H_{\overline{M}}(n,2) = H_{B}(n,2) = n-1,$$

 $H_{pm}(n,2) = H_{M}(n,2) = H_{S}(n,2) = \left\lfloor \frac{n}{2} \right\rfloor,$

Asymptotic diameter

Simplicial complexes

Connected layer families

The maximum diameter of pure simplicial complexes

In dimension two:

Theorem

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem

$$H_C(kn,kd) > \frac{1}{2^k}H_C(n,d)^k.$$

$$\Omega\left(\frac{n^{\frac{2d}{3}}}{9^{\frac{d}{3}}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

Asymptotic diameter

Simplicial complexes

Connected layer families

The maximum diameter of pure simplicial complexes

In dimension two:

Theorem

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem

$$H_C(kn,kd) > \frac{1}{2^k}H_C(n,d)^k.$$

$$\Omega\left(\frac{n^{\frac{2d}{3}}}{9^{\frac{d}{3}}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

Asymptotic diameter

Simplicial complexes

Connected layer families

The maximum diameter of pure simplicial complexes

In dimension two:

Theorem

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem

$$H_C(kn,kd) > \frac{1}{2^k}H_C(n,d)^k.$$

$$\Omega\left(\frac{n^{\frac{2d}{3}}}{9^{\frac{d}{3}}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

Asymptotic diameter

Simplicial complexes

Connected layer families

The maximum diameter of pure simplicial complexes

In dimension two:

Theorem

$$\frac{2}{9}(n-1)^2 < H_C(n,3) = H_{\overline{pm}}(n,3) < \frac{1}{4}n^2.$$

In higher dimension:

Theorem

$$H_C(kn,kd) > \frac{1}{2^k}H_C(n,d)^k.$$

$$\Omega\left(\frac{n^{\frac{2d}{3}}}{9^{\frac{d}{3}}}\right) < H_C(n,d) = H_{\overline{pm}}(n,d) < \binom{n}{d-1}.$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

 $H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$

• Without loss of generality assume n = 3k + 1.

- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- 3 Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- ④ Glue together the k chains using k 1 triangles.

$$(2k+1)k-2 > \frac{2}{9}(n-1)^2.$$

re The counter-examp

Asymptotic diameter

Simplicial complexes

Connected layer families

 $H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- 3 Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- ④ Glue together the k chains using k 1 triangles.

$$(2k+1)k-2 > \frac{2}{9}(n-1)^2.$$

re The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

 $H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- 3 Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- ④ Glue together the k chains using k 1 triangles.

$$(2k+1)k-2 > \frac{2}{9}(n-1)^2.$$

onjecture The counter-example(s) Asymptotic diameter Simplic

Simplicial complexes

Connected layer families

 $H_{\overline{pm}}(n,3) > \frac{2}{3}(n-1)^2$

- Without loss of generality assume n = 3k + 1.
- **2** With the first 2k + 1 vertices, construct *k* disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into *k* disjoint Hamiltonian cycles).
- Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- ④ Glue together the k chains using k 1 triangles.

$$(2k+1)k-2 > \frac{2}{9}(n-1)^2.$$

njecture The counter-example(s) Asymptotic diameter

Simplicial complexes

Connected layer families

 $H_{\overline{pm}}(n,3) > \frac{2}{3}(n-1)^2$

- Without loss of generality assume n = 3k + 1.
- **2** With the first 2k + 1 vertices, construct *k* disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into *k* disjoint Hamiltonian cycles).
- Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(n-1)^2.$$

njecture The counter-example(s) Asymptotic diameter

Simplicial complexes

Connected layer families

 $H_{\overline{pm}}(n,3) > \frac{2}{9}(n-1)^2$

- Without loss of generality assume n = 3k + 1.
- With the first 2k + 1 vertices, construct k disjoint cycles of length 2k + 1 (That is, decompose K_{2k+1} into k disjoint Hamiltonian cycles).
- Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
- Glue together the k chains using k 1 triangles.

$$(2k+1)k-2>\frac{2}{9}(n-1)^2.$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

 $H_C(kn, kd) > \frac{1}{2^k}H_C(n, d)^k$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- 3 In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

 $H_C(kn, kd) > \frac{1}{2^k}H_C(n, d)^k$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join △^{*k} of k copies of △. △^{*k} is a complex of dimension kd 1, with kn vertices and whose dual graph is a k-dimensional grid of size H_C(n, d). (It has (H_C(n, d) + 1)^k maximal simplices).
- 3 In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

 $H_C(kn, kd) > \frac{1}{2^k}H_C(n, d)^k$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of k copies of Δ. Δ^{*k} is a complex of dimension kd 1, with kn vertices and whose dual graph is a k-dimensional grid of size H_C(n, d). (It has (H_C(n, d) + 1)^k maximal simplices).
- In this grid we just want to find a long induced path. This can easily be done using a fraction of ¹/_{2^k} of the vertices.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

 $H_C(kn, kd) > \frac{1}{2^k}H_C(n, d)^k$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- 3 In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

 $H_C(kn, kd) > \frac{1}{2^k}H_C(n, d)^k$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- 3 In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

 $H_C(kn, kd) > \frac{1}{2^k}H_C(n, d)^k$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- 3 In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2k}$ of the vertices.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

 $H_C(kn, kd) > \frac{1}{2^k}H_C(n, d)^k$

- Let Δ be a complex achieving $H_C(n, d)$. W.I.o.g. assume its dual graph is a path.
- 2 Take the join Δ^{*k} of *k* copies of Δ . Δ^{*k} is a complex of dimension kd 1, with *kn* vertices and whose dual graph is a *k*-dimensional grid of size $H_C(n, d)$. (It has $(H_C(n, d) + 1)^k$ maximal simplices).
- In this grid we just want to find a long induced path. This can easily be done using a fraction of ¹/_{2k} of the vertices.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?

Asymptotic diameter

Simplicial complexes

Connected layer families

A special class of complexes

Definition

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

 $\lambda: \mathsf{facets}(\Delta) o \mathbb{Z}$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A special class of complexes

Definition

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

 $\lambda : \mathsf{facets}(\Delta) \to \mathbb{Z}$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A special class of complexes

Definition

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

 $\lambda : \mathsf{facets}(\Delta) \to \mathbb{Z}$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A special class of complexes

Definition

A connected layer family (CLF) of rank *d* on *n* symbols is a pure simplicial complex Δ of dimension *d* - 1 with *n* vertices, together with a map

 $\lambda : \mathsf{facets}(\Delta) \to \mathbb{Z}$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Diameter of CLF's

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Diameter of CLF's

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols.

Example (Manifolds)

Simplicial manifolds, (with or without boundary) become CLF's as follows: take a simplex σ_0 as root, and let $\lambda(\sigma) := \text{dist}(\sigma_0, \sigma)$, for every $\sigma \in \Delta$.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Diameter of CLF's

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols.

Example (Manifolds)

Simplicial manifolds, (with or without boundary) become CLF's as follows: take a simplex σ_0 as root, and let $\lambda(\sigma) := \text{dist}(\sigma_0, \sigma)$, for every $\sigma \in \Delta$.

This shows that:

$$H_{clf}(n,d) \geq H_{\overline{M}}(n,d).$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Diameter of CLF's

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols.

Example (Manifolds)

Simplicial manifolds, (with or without boundary) become CLF's as follows: take a simplex σ_0 as root, and let $\lambda(\sigma) := \text{dist}(\sigma_0, \sigma)$, for every $\sigma \in \Delta$.

More generally, $H_{clf}(n, d)$ is an upper bound for the diameter of all complexes with *connected links*.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Diameter of CLF's

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Diameter of CLF's

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols.

) 0 1 2 2 4 5 6 7 9 0	
13 14 35 36 57 58	
Δ 12 34 56 78	
The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Diameter of CLF's

Let $H_{clf}(n, d) :=$ max length of a CLF of rank d on n symbols.

Example (A CLF of rank 2 and length $\sim 3n/2$)											
	λ	0	1	2	3	4	5	6	7	8	9
			13	14		35	36		57	58	
	Δ	12			34		. –	56			78
			24	23		46	45		68	67	

This shows that:

$$H_{clf}(n,3) \ge \left\lfloor rac{3n}{2}
ight
floor$$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

- **2** $H_{clf}(n, d) \le n^{\log_2 d + 2}$.
- 3 $H_{clf}(n, d) \leq 2^{d-2}n.$

(Kalai-Kleitman bound) Barnotto Larman bound)

 $H_{clf}(n, n/4) \ge \Omega(n^2/\log n).$

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

- $H_{clf}(n,d) \geq H_{\overline{M}}(n,d) \geq H(n,d).$
- **2** $H_{clf}(n, d) \leq n^{\log_2 d+2}$.

 $H_{clf}(n, n/4) \geq \Omega(n^2/\log n).$

3 $H_{clf}(n,d) \leq 2^{d-2}n.$

(Kalai-Kleitman bound)

(Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

2
$$H_{clf}(n,d) \leq n^{\log_2 d+2}$$
.

 $H_{clf}(n, n/4) \geq \Omega(n^2/\log n).$

3
$$H_{clf}(n,d) \le 2^{d-2}n$$
.

(Kalai-Kleitman bound)

(Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

2
$$H_{clf}(n, d) \leq n^{\log_2 d + 2}$$

3
$$H_{clf}(n,d) \le 2^{d-2}n.$$

(Kalai-Kleitman bound)

(Barnette-Larman bound)

 $H_{clf}(n, n/4) \geq \Omega(n^2/\log n).$

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

2
$$H_{clf}(n, d) \leq n^{\log_2 d + 2}$$

3
$$H_{clf}(n,d) \le 2^{d-2}n$$
.

(Kalai-Kleitman bound)

(Barnette-Larman bound)

 $H_{clf}(n, n/4) \geq \Omega(n^2/\log n).$

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

2
$$H_{clf}(n,d) \leq n^{\log_2 d+2}$$

3
$$H_{clf}(n,d) \le 2^{d-2}n$$
.

(Kalai-Kleitman bound)

(Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

2
$$H_{clf}(n,d) \leq n^{\log_2 d+2}$$

3
$$H_{clf}(n,d) \le 2^{d-2}n$$
.

(Kalai-Kleitman bound)

(Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

2
$$H_{clf}(n,d) \leq n^{\log_2 d+2}$$

3
$$H_{clf}(n,d) \le 2^{d-2}n$$
.

(Kalai-Kleitman bound)

(Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than 2n.

Question

$H_{clf}(n,d) \leq n^{\log_2 d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq H_{clf}(\lfloor n/2
floor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be two simplices. For each i ∈ N, let U_i be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u', v') \leq H_{clf}(n-1, d-1).$

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq H_{clf}(\lfloor n/2
floor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be two simplices. For each i ∈ N, let U_i be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u',v') \leq H_{clf}(n-1,d-1).$

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq H_{clf}(\lfloor n/2
floor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be two simplices. For each i ∈ N, let U_i be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u',v') \leq H_{clf}(n-1,d-1).$

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq H_{clf}(\lfloor n/2 \rfloor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be two simplices. For each i ∈ N, let U_i be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.

• Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u', v') \leq H_{clf}(n-1, d-1).$

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq H_{clf}(\lfloor n/2
floor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be two simplices. For each i ∈ N, let U_i be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u', v') \leq H_{clf}(n-1, d-1).$

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq H_{clf}(\lfloor n/2
floor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be two simplices. For each i ∈ N, let U_i be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

 $d(u',v') \leq H_{clf}(n-1,d-1).$

The Kalai-Kleitman bound follows from the following recursion:

$$H_{clf}(n,d) \leq H_{clf}(\lfloor n/2
floor,d) + H_{clf}(n-1,d-1) + 2.$$

To prove the recursion:

- Let u and v be two simplices. For each i ∈ N, let U_i be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_i the j-neighborhood of v.
- Let i_0 and j_0 be the smallest values such that U_{i_0} and V_{j_0} contain more than half of the vertices. This implies $i_0 1$ and $j_0 1$ are at most $H_{clf}(\lfloor n/2 \rfloor, d)$.
- Let $u' \in U_{i_0}$ and $v' \in V_{j_0}$ having a common vertex. Then:

$$d(u', v') \leq H_{clf}(n-1, d-1).$$

So:
$$d(u, v) \leq d(u, u') + d(u', v') + d(u, v) \leq$$

 $\leq 2H_{clf}(\lfloor n/2 \rfloor, d) + H_{clf}(n-1, d-1) + 2.$

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank *d* on *n* symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank *d* on *n* symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

A complete CLMF of length d(n-1):

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	113	114	124	134	144	244	344	444
			122	123	133	224	234	334		
				222	223	233	333			I

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank *d* on *n* symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

An injective CLMF of length $d(n-1)$:										
λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	122	222	223	233	333	334	344	444

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than d(n - 1).

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

$$d(n-1)$$
.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than d(n - 1).

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

$$d(n-1)$$
.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than d(n - 1).

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

$$d(n-1)$$
.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than d(n - 1).

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

$$d(n-1)$$
.

Asymptotic diameter

Simplicial complexes

Connected layer families

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than d(n - 1).

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

$$d(n-1)$$
.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A New Conjecture

Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \le 3$, $d \le 2$, $n + d \le 11$, or $6n + d \le 37$.

If true, it would imply:

Conjecture

The diameter of a *d*-polytope (or any *d*-manifold with boundary) with *n*-facets cannot exceed

d(n-d) + 1.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A New Conjecture

Hähnle's Conjecture has been checked for all the values of *n* and *d* satisfying $n \le 3$, $d \le 2$, $n + d \le 11$, or $6n + d \le 37$.

If true, it would imply:

Conjecture

The diameter of a *d*-polytope (or any *d*-manifold with boundary) with *n*-facets cannot exceed

d(n-d) + 1.

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

A New Conjecture

Hähnle's Conjecture has been checked for all the values of *n* and *d* satisfying $n \le 3$, $d \le 2$, $n + d \le 11$, or $6n + d \le 37$.

If true, it would imply:

Conjecture

The diameter of a *d*-polytope (or any *d*-manifold with boundary) with *n*-facets cannot exceed

d(n-d) + 1.

Thank you

TO BE CONTINUED???

"Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."

Thank you

TO BE CONTINUED???

"Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."

The counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Thank you

TO BE CONTINUED???

"Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."

e conjecture The co

he counter-example(s)

Asymptotic diameter

Simplicial complexes

Connected layer families

Thank you

TO BE CONTINUED???

"Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."