How false is the Hirsch Conjecture?

Francisco Santos http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

$$
\text { VIII JMDA, Almería - July 12, } 2012
$$

Polyhedra and polytopes

Definition

A (convex) polyhedron P is the intersection of a finite family of affine half-spaces in \mathbb{R}^{d}.

The dimension of P is the dimension of its affine hull.

Polyhedra and polytopes

Definition

A (convex) polytope P is the convex hull of a finite set of points in \mathbb{R}^{d}.

The dimension of P is the dimension of its affine hull.

Polyhedra and polytopes

Polytope = bounded polyhedron.

The dimension of P is the dimension of its affine hull.

Polyhedra and polytopes

Polytope = bounded polyhedron.

The dimension of P is the dimension of its affine hull.

Faces of P

Let P be a polytope (or polyhedron) and let

$$
H=\left\{x \in \mathbb{R}^{d}: a_{1} x_{1}+\cdots a_{d} x_{d} \leq a_{0}\right\}
$$

be an affine half-space.
If $P \subset H$ we say that $\partial H \cap P$ is a face of P.

Faces of P

Let P be a polytope (or polyhedron) and let

$$
H=\left\{x \in \mathbb{R}^{d}: a_{1} x_{1}+\cdots a_{d} x_{d} \leq a_{0}\right\}
$$

be an affine half-space.
If $P \subset H$ we say that $\partial H \cap P$ is a face of P.

Faces of P

The "empty face" of P.

Faces of P

Faces of P

Faces of dimension 0 are called vertices.

Faces of P

Faces of dimension 1 are called edges.

Faces of P

Faces of dimension $d-1$ (codimension 1) are called facets.

The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected) graph.

The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected) graph.

The distance $d(u, v)$ between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example $d(u, v)=$?

The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected) graph.

The distance $d(u, v)$ between vertices u and v is the length (number of edges) of the shortest path from u to v.
For example, $d(u, v)=2$.

The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected) graph.

The diameter of $G(P)$ (or of P) is the maximum distance among its vertices:

$$
\delta(P):=\max \{d(u, v): u, v \in V\} .
$$

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Wairen M M I'irsch (1957)
For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

polytope	faces	dimension	$n-d$	diameter
cube	6	3	3	3
dodecahedron	12	3	9	5
octahedron	8	3	5	2
k-prism	$k+2$	3	$k-1$	$\lfloor k / 2\rfloor+1$
n-cube	$2 n$	n	n	n

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
 For every polyhedron P with n facets and dimension d,

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

polytope	faces	dimension	$n-d$	diameter
cube	6	3	3	3
dodecahedron	12	3	9	5
octahedron	8	3	5	2
k-prism	$k+2$	3	$k-1$	$\lfloor k / 2\rfloor+1$
n-cube	$2 n$	n	n	n

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

Fifty three years later...

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Fifty three years later...

Theorem (S. 2010+)
There is a 43 -dim. polytope with 86 facets and diameter ≥ 44.

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

Fifty four years later...

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Fifty four years later...

Theorem (Matschke-S.-Weibel 2011+)
There is a 20-dim. polytope with 40 facets and diameter ≥ 21.

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

Fifty five years later...

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

Fifty five years later...

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Fifty five years later...

"Polynomial Hirsch Conjecture"

Is there a polynomial upper bound for $\delta(P)$?

The Hirsch conjecture

Let $\delta(P)$ denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)

For every polyhedron P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Fifty five years later...

"Polynomial Hirsch Conjecture"

Is there a polynomial upper bound for $\delta(P)$? Is $\delta(P) \leq 2(n-d)$ a valid upper bound????

Motivation: linear programming

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simolex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

Motivation: linear programming

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

Motivation: linear programming

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

Motivation: linear programming

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

Motivation: linear programming

- The set of feasible solutions $P=\left\{x \in \mathbb{R}^{d}: M x \leq b\right\}$ is a polyhedron P with (at most) n facets and d dimensions.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves linear programming by starting at any feasible vertex and moving along the graph of P, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial time algorithm (for some pivot rule).

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]).

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But:

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But:

The number of pivot steps [that the simplex method takes] to solve a problem with m equality constraints in n nonnegative variables is almost always at most a small multiple of m, say $3 m$.
(M. Todd, 2011)

Complexity of linear programming

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But:

The number of pivot steps [that the simplex method takes] to solve a problem with m equality constraints in n nonnegative variables is almost always at most a small multiple of m, say $3 m$.

The simplex method has remained, if not the method of choice, a method of choice, usually competitive with, and on some classes of problems superior to, the more modern approaches.
(M. Todd, 2011)

What do we know?

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

$$
\delta(P) \leq n-d
$$

Theorem [Kalai-Kleitman 1992]

$$
H(n, d) \leq n^{\log _{2} d+2}, \quad \forall n, d
$$

Theorem [Barnette 1967, Larman 1970]

$$
H\left(n, d^{\prime}\right) \leq n 2^{d-3} \quad \forall n, d .
$$

What do we know?

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Theorem [Kalai-Kleitman 1992]

Theorem [Barnette 1967, Larman 1970]

What do we know?

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Theorem [Kalai-Kleitman 1992]

$$
H(n, d) \leq n^{\log _{2} d+2}, \quad \forall n, d .
$$

Theorem [Barnette 1967, Larman 1970]

What do we know?

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

$$
\delta(P) \leq n-d .
$$

Theorem [Kalai-Kleitman 1992]

$$
H(n, d) \leq n^{\log _{2} d+2}, \quad \forall n, d .
$$

Theorem [Barnette 1967, Larman 1970]

$$
H(n, d) \leq n 2^{d-3}, \quad \forall n, d .
$$

The d-step Theorem

Theorem (Klee-Walkup, 1967)

Let P be a polytope of dimension d, with n facets and diameter δ. Then there is another polytope P^{\prime} of dimension $d+1$, with $n+1$ facets and diameter $\geq \delta$.

Corollary (d-step theorem)
For each $n>d \in \mathbb{N}$, let $H(n, d)$ cenote the maximum diameter among d-polytopes with n facets. Then

The d-step Theorem

Theorem (Klee-Walkup, 1967)

Let P be a polytope of dimension d, with n facets and diameter δ. Then there is another polytope P^{\prime} of dimension $d+1$, with $n+1$ facets and diameter $\geq \delta$.

Corollary (d-step theorem)
For each $n>d \in \mathbb{N}$, let $H(n, d)$ denote the maximum diameter among d-polytopes with n facets. Then

$$
H(n, d) \leq H(2 n-2 d, n-d) .
$$

Wedging, a.k.a. one-point-suspension

Wedging, a.k.a. one-point-suspension

The construction

The construction of counter-examples has two ingredients:

(1) A strong d-step theorem for prismatoids.
(2) The construction of a prismatoid of dimension 5 and "width" 6.

The construction

The construction of counter-examples has two ingredients:
(1) A strong d-step theorem for prismatoids.
(2) The construction of a prismatoid of dimension 5 and "width" 6.

The construction

The construction of counter-examples has two ingredients:
(1) A strong d-step theorem for prismatoids.
(2) The construction of a prismatoid of dimension 5 and "width" 6.

The construction

The construction of counter-examples has two ingredients:
(1) A strong d-step theorem for prismatoids.
(2) The construction of a prismatoid of dimension 5 and "width" 6.

Prismatoids

Definition

A prismatoid is a polytope Q with two (parallel) facets Q^{+}and Q^{-}containing all vertices.

15

Prismatoids

Definition

A prismatoid is a polytope Q with two (parallel) facets Q^{+}and Q^{-}containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^{+} to Q^{-}.

Prismatoids

Theorem (Strong d-step theorem, prismatoid version)
Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ. Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

Corollary
In particular, if a prismatoid Q has width $>d$ then there is another prismatoid Q^{\prime} (of dimension $n-d$, with $2 n-2 d$ vertices, and width $\geq \delta+n-2 d>n-d$) that violates (the dual of) the Hirsch conjecture.

Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ. Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

In particular, if a prismatoid Q has width $>d$ then there is another prismatoid Q^{\prime} (of dimension $n-d$, with $2 n-2 d$ vertices, and width $\geq \delta+n-2 d^{\prime}>n-d^{\prime}$) that violates (the dual of) the Hilisch conjecture.

Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with $n>2 d$ vertices and width δ. Then there is another prismatoid Q^{\prime} of dimension $d+1$, with $n+1$ vertices and width $\delta+1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until $n=2 d$.

Corollary

In particular, if a prismatoid Q has width $>d$ then there is another prismatoid Q^{\prime} (of dimension $n-d$, with $2 n-2 d$ vertices, and width $\geq \delta+n-2 d>n-d$) that violates (the dual of) the Hirsch conjecture.

The strong d-step Theorem

Proof.

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

```
Question
Do they exist?
- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
    2011].
- 5-prismatoids of width 6 exist [S., 2010] with }25\mathrm{ vertices
    [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist
    [Matschke-S.-Weibel 2011+].
```


Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension d and width larger than d. Its number of vertices and facets is irrelevant...

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011+].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011+].

A 5-prismatoid of width >5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

A 5-prismatoid of width >5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

$$
\left.Q:=\mathrm{conv}\left\{\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\pm 18 & 0 & 0 & 0 & 1 \\
0 & \pm 18 & 0 & 0 & 1 \\
0 & 0 & \pm 45 & 0 & 1 \\
0 & 0 & 0 & \pm 45 & 1 \\
\pm 15 & \pm 15 & 0 & 0 & 1 \\
0 & 0 & \pm 30 & \pm 30 & 1 \\
0 & \pm 10 & \pm 40 & 0 & 1 \\
\pm 10 & 0 & 0 & \pm 40 & 1
\end{array}\right) \quad\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & 0 & \pm 18 & -1 \\
0 & 0 & \pm 18 & 0 & -1 \\
\pm 45 & 0 & 0 & 0 & -1 \\
0 & \pm 45 & 0 & 0 & -1 \\
0 & 0 & \pm 15 & \pm 15 & -1 \\
\pm 30 & \pm 30 & 0 & 0 & -1 \\
\pm 40 & 0 & \pm 10 & 0 & -1 \\
0 & \pm 40 & 0 & \pm 10 & -1
\end{array}\right)\right\}
$$

A 5-prismatoid of width >5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter (at least) 44.

Smaller 5-prismatoids of width >5

With the same ideas
Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices, and diameter 21.

Smaller 5-prismatoids of width >5

With the same ideas
Theorem (Matschke-Santos-Weibel, 2011)
There is a 5 -prismatoid with 25 vertices and of width 6 .

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices, and diameter 21.

Smaller 5-prismatoids of width >5

With the same ideas
Theorem (Matschke-Santos-Weibel, 2011)
There is a 5 -prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices, and diameter 21.

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several conies of it (dimension increases)
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

$$
\epsilon(P):=\frac{\delta}{n-d}-1=\frac{\delta-(n-d)}{n-d} .
$$

E. g.: The excess of our non-Hirsch polytope with $n-d=20$ and with diameter 21 is

$$
\frac{21-20}{20}=5 \% .
$$

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we cal excess of a d-polytope P with n facets and diameter δ the number

E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number
E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

$$
\epsilon(P):=\frac{\delta}{n-d}-1=\frac{\delta-(n-d)}{n-d} .
$$

E. g.: The excess of our non-Hirsch polytope with $n-d=20$
and with diameter 21 is

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
(1) Products of several copies of it (dimension increases).
(2) Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a d-polytope P with n facets and diameter δ the number

$$
\epsilon(P):=\frac{\delta}{n-d}-1=\frac{\delta-(n-d)}{n-d} .
$$

E. g.: The excess of our non-Hirsch polytope with $n-d=20$ and with diameter 21 is

$$
\frac{21-20}{20}=5 \% .
$$

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

$$
\frac{\delta_{1}}{n_{1}-d}-1=\frac{\delta_{2}}{n_{2}-d}-1=\epsilon \quad \Rightarrow \quad \frac{\delta}{n-d}-1=\epsilon-\frac{1}{\left(n_{1}-d\right)+\left(n_{2}-d\right)}
$$

Many non-Hirsch polytopes

(1) Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension $20 k$ with $40 k$ facets and with excess equal to $0.05=5 \%$.
(2) Gluing several copies (slightly) decreases the excess.

Corollary

For each $k \in \mathbb{N}$ there is an infinite family of non-Hirsch polytopes of fixed dimension 20k and with excess (tending to)

$$
0.05\left(1-\frac{1}{k}\right) .
$$

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call excess of a prismatoid of width δ with n vertices and dimension d the quantity

$$
\frac{\delta-d}{n-d}
$$

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong d-step Theorem are

So, its excess is

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong d-step Theorem are

$$
n-d, \quad 2(n-d), \quad \delta+(n-2 d) .
$$

So, its excess is

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong d-step Theorem are

$$
n-d, \quad 2(n-d), \quad \delta+(n-2 d) .
$$

So, its excess is

$$
\frac{\delta+(n-2 d)-(n-d)}{n-d}=\frac{\delta-d}{n-d} .
$$

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(} n)$. but their excess tends to

> Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

> Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{ }(n)$... but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct
5 -prismatoids with n vertices and linear width $\simeq \alpha n$.
Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{ }(n)$... but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{ }(n)$... but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α.

Prismatoids of large width won't help (much)

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{ }(n)$... but their excess tends to zero:

$$
\lim \frac{\delta-5}{n-5}=\lim \frac{\sqrt{n}-5}{n-5}=0 .
$$

Let us be optimistic and suppose that we could construct 5 -prismatoids with n vertices and linear width $\simeq \alpha n$.

Their excess will now tend to α. So, we still get only polytopes that violate Hirsch by a constant ("linear" Hirsch bound).

Prismatoids of large width won't help (much)

OK, can we be more optimistic? Can we hope for prismatoids

 of width greater than linear?In fixed dimension, certainly not:

Theorem
The width of a d-dimensional prismatoid with n vertices cannot exceed 2^{d-3} n.

Proof.
This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ~1970].

Prismatoids of large width won't help (much)

OK, can we be more optimistic? Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem
The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3} n$.

Proof.
This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ~1970].

Prismatoids of large width won't help (much)

OK, can we be more optimistic? Can we hope for prismatoids of width greater than linear?
In fixed dimension, certainly not:

Theorem
The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3} n$.

Proof.
This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ~1970].

Prismatoids of large width won't help (much)

OK, can we be more optimistic? Can we hope for prismatoids of width greater than linear?
In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3} n$.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ~1970]

Prismatoids of large width won't help (much)

OK, can we be more optimistic? Can we hope for prismatoids of width greater than linear?
In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3} n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ~1970].

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem
The width of a 5-dimensional prismatoid with n vertices cannot exceed n/3 + 1 .

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5 -dimensional prismatoid with n vertices cannot exceed $n / 3+1$.

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot exceed $n / 3+1$.

Corollary

Using the Strong d-step Theorem for 5-prismatoids it is impossible to violate the Hirsch conjecture by more than 33%.

More general setting

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

```
- Strongly connected pure simplicial complexes.
- Pseudo-manifolds (w. or wo. bdry). }\mp@subsup{H}{pm}{}(n,d),\mp@subsup{H}{pm}{}(n,d
- Simplicial manifolds (w. or wo. bdry). }\mp@subsup{H}{\overline{M}}{}(n,d),\mp@subsup{H}{M}{}(n,d
- Simplicial spheres (or balls).
Remark, in all definitions of }\mp@subsup{H}{\bullet}{}(n,d),n\mathrm{ is the number of
vertices and d-1 is the dimension.
```


More general setting

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_{C}(n, d)$
\square
- Simplicial manifolds (w. or wo. bdry).
- Simplicial spheres (or balls).

[^0]
More general setting

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_{C}(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $\quad H_{p m}(n, d), H_{p m}(n, d)$
- Simplicial spheres (or balls).

[^1]
More general setting

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_{C}(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $\quad H_{p m}(n, d), H_{p m}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $\quad H_{\bar{M}}(n, d), H_{M}(n, d)$

[^2]
More general setting

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_{C}(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $\quad H_{p m}(n, d), H_{p m}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $\quad H_{\bar{M}}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls). $\quad H_{S}(n, d), H_{B}(n, d)$,

Remark, in all definitions of $H_{0}(n, d), n$ is the number of
vertices and $d-1$ is the dimension.

More general setting

Instead of looking at (simplicial) polytopes, why not look at the maximum diameter of more general complexes?

- Strongly connected pure simplicial complexes. $H_{C}(n, d)$
- Pseudo-manifolds (w. or wo. bdry). $\quad H_{p m}(n, d), H_{p m}(n, d)$
- Simplicial manifolds (w. or wo. bdry). $\quad H_{\bar{M}}(n, d), H_{M}(n, d)$
- Simplicial spheres (or balls). $H_{S}(n, d), H_{B}(n, d)$,

Remark, in all definitions of $H_{\bullet}(n, d), n$ is the number of vertices and $d-1$ is the dimension.

Some easy remarks and a toy example

There are the following relations:

$$
\begin{array}{r}
H_{C}(n, d)=H_{\overline{p m}}(n, d) \geq H_{\bar{M}}(n, d) \geq H_{B}(n, d) \\
V I \\
V I \\
H_{p m}(n, d) \geq H_{M}(n, d) \geq H_{S}(n, d)
\end{array}
$$

In dimension one (graphs):

$$
H_{p m}(n, 2)=H_{M}(n, 2)=H_{S}(n, 2)=\left\lfloor\frac{n}{2}\right\rfloor
$$

Some easy remarks and a toy example

There are the following relations:

In dimension one (graphs):

$$
H_{C}(n, 2)=H_{\overline{p m}}(n, 2)=H_{\bar{M}}(n, 2)=H_{B}(n, 2)=n-1,
$$

$$
H_{p m}(n, 2)=H_{M}(n, 2)=H_{S}(n, 2)=\left\lfloor\frac{n}{2}\right\rfloor
$$

$$
\begin{aligned}
& \begin{array}{c}
H_{C}(n, d)=\underset{V I}{H_{p m}(n, d)} \underset{V I}{H_{M}(n, d)} \geq H_{V I}(n, d) \\
V I
\end{array} \\
& H_{p m}(n, d) \geq H_{M}(n, d) \geq H_{S}(n, d)
\end{aligned}
$$

The maximum diameter of pure simplicial complexes

In dimension two:
Theorem

In higher dimension:
Theorem

$$
H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k} .
$$

Corollary

The maximum diameter of pure simplicial complexes

In dimension two:
Theorem

$$
\frac{2}{9}(n-1)^{2}<H_{C}(n, 3)=H_{p m}(n, 3)<\frac{1}{4} n^{2} .
$$

In higher dimension:
Theorem

The maximum diameter of pure simplicial complexes

In dimension two:

Theorem

$$
\frac{2}{9}(n-1)^{2}<H_{C}(n, 3)=H_{p m}(n, 3)<\frac{1}{4} n^{2} .
$$

In higher dimension:
Theorem

$$
H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k} .
$$

The maximum diameter of pure simplicial complexes

In dimension two:

Theorem

$$
\frac{2}{9}(n-1)^{2}<H_{C}(n, 3)=H_{p m}(n, 3)<\frac{1}{4} n^{2} .
$$

In higher dimension:

Theorem

$$
H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k} .
$$

Corollary

$$
\Omega\left(\frac{n^{\frac{2 d}{3}}}{9^{\frac{d}{3}}}\right)<H_{C}(n, d)=H_{p m}(n, d)<\binom{n}{d-1} .
$$

$H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$$
(2 k+1) k-2>\frac{2}{9}(n-1)^{2} .
$$

$$
H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}
$$

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$$
H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}
$$

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$H_{p m}(n, 3)>\frac{2}{9}(n-1)^{2}$

(1) Without loss of generality assume $n=3 k+1$.
(2) With the first $2 k+1$ vertices, construct k disjoint cycles of length $2 k+1$ (That is, decompose $K_{2 k+1}$ into k disjoint Hamiltonian cycles).
(3) Remove an edge from each cycle to make it a chain, and join each chain to each of the remaining k vertices.
(4) Glue together the k chains using $k-1$ triangles.

In this way we get a chain of triangles of length

$$
(2 k+1) k-2>\frac{2}{9}(n-1)^{2} .
$$

$H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k}$

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.l.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of $\Delta . \Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

$H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k}$

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of $\Delta . \Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

$H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k}$

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of $\Delta . \Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

$H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k}$

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of Δ. dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

$H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k}$

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of Δ. $\Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2 k}$ of the vertices.

$H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k}$

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of Δ. $\Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid we just want to find a long induced path.
can easily be done using a fraction of $\frac{1}{2 \kappa}$ of the vertices.

$H_{C}(k n, k d)>\frac{1}{2^{k}} H_{C}(n, d)^{k}$

(1) Let Δ be a complex achieving $H_{C}(n, d)$. W.I.o.g. assume its dual graph is a path.
(2) Take the join $\Delta^{* k}$ of k copies of Δ. $\Delta^{* k}$ is a complex of dimension $k d-1$, with $k n$ vertices and whose dual graph is a k-dimensional grid of size $H_{C}(n, d)$. (It has $\left(H_{C}(n, d)+1\right)^{k}$ maximal simplices).
(3) In this grid we just want to find a long induced path. This can easily be done using a fraction of $\frac{1}{2^{k}}$ of the vertices.

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?

So, pure simplicial complexes (even pseudo-manifolds) can have exponential diameters.

What restriction should we put for (having at least hopes of) getting polynomial diameters?

A special class of complexes

Definition

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map
with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The length of a CLF is the difference between the maximum and the minimum values taken by λ.

A special class of complexes

Definition

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The length of a CLF is the difference between the maximum and the minimum values taken by λ.

A special class of complexes

Definition

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The length of a CLF is the difference between the maximum and the minimum values taken by λ.

A special class of complexes

Definition

A connected layer family (CLF) of rank d on n symbols is a pure simplicial complex Δ of dimension $d-1$ with n vertices, together with a map

$$
\lambda: \operatorname{facets}(\Delta) \rightarrow \mathbb{Z}
$$

with the following property: for every simplex (of whatever dimension) $\tau \in \Delta$ the values taken by λ in the star of τ form an interval.

The length of a CLF is the difference between the maximum and the minimum values taken by λ.

Diameter of CLF's

Let $H_{c l f}(n, d):=$ max length of a CLF of rank d on n symbols.

Diameter of CLF's

Let $H_{\text {clf }}(n, d):=$ max length of a CLF of rank d on n symbols.

Example (Manifolds)

Simplicial manifolds, (with or without boundary) become CLF's as follows: take a simplex σ_{0} as root, and let $\lambda(\sigma):=\operatorname{dist}\left(\sigma_{0}, \sigma\right)$, for every $\sigma \in \Delta$.

Diameter of CLF's

Let $H_{c l f}(n, d):=$ max length of a CLF of rank d on n symbols.

Example (Manifolds)

Simplicial manifolds, (with or without boundary) become CLF's as follows: take a simplex σ_{0} as root, and let $\lambda(\sigma):=\operatorname{dist}\left(\sigma_{0}, \sigma\right)$, for every $\sigma \in \Delta$.

This shows that:

$$
H_{c l f}(n, d) \geq H_{M}(n, d)
$$

Diameter of CLF's

Let $H_{\text {clf }}(n, d):=$ max length of a CLF of rank d on n symbols.

Example (Manifolds)

Simplicial manifolds, (with or without boundary) become CLF's as follows: take a simplex σ_{0} as root, and let $\lambda(\sigma):=\operatorname{dist}\left(\sigma_{0}, \sigma\right)$, for every $\sigma \in \Delta$.

More generally, $H_{\text {clf }}(n, d)$ is an upper bound for the diameter of all complexes with connected links.

Diameter of CLF's

Let $H_{c l f}(n, d):=$ max length of a CLF of rank d on n symbols.

Diameter of CLF's

Let $H_{c l f}(n, d):=\max$ length of a CLF of rank d on n symbols.
Example (A CLF of rank 2 and length $\sim 3 n / 2$)

λ	0	1	2	3	4	5	6	7	8	9
Δ	12	13	14		35	36		57	58	
		24	23		46	45		68	67	78

Diameter of CLF's

Let $H_{c l f}(n, d):=\max$ length of a CLF of rank d on n symbols.
Example (A CLF of rank 2 and length $\sim 3 n / 2$)

λ	0	1	2	3	4	5	6	7	8	9
Δ	12	13	14		35	36		57	58	7
		24	23		46	45		68	67	78

This shows that:

$$
H_{c l f}(n, 3) \geq\left\lfloor\frac{3 n}{2}\right\rfloor
$$

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{\text {Clf }}(n, d) \leq n^{\log _{2} d+2}$. (Kalai-Kleitman bound)
(3) $H_{c l f}(n, d) \leq 2^{d-2} n$.
(Barnette-Larman bound)
(4) $H_{\text {clf }}(n, n / 4) \geq \Omega\left(n^{2} / \log n\right)$.

This implies, for example:
Corollary (of part 3)
A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question
Do surfaces satisfy the Hirsch conjecture? (Those without boundary do).

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{c l f}(n, d) \leq n^{\log _{2} d+2}$.
(Kalai-Kleitman bound)

(Barnette-Larman bound)

This implies, for example:
Corollary (of nart 3)
A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question
Do surfaces satisfy the Hirsch conjecture? (Those without boundary do).

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$.
(3) $H_{\text {clf }}(n, d) \leq 2^{d-2} n$.
(Kalai-Kleitman bound)
(Barnette-Larman bound)

This implies, for example:
Corollary (of nart 3)
A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question
Do surfaces satisfy the Hirsch conjecture? (Those without boundary do).

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$.
(3) $H_{c l f}(n, d) \leq 2^{d-2} n$.
(4) $H_{c l f}(n, n / 4) \geq \Omega\left(n^{2} / \log n\right)$.
(Barnette-Larman bound)
(Kalai-Kleitman bound)

This implies, for example:
\square
A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question
Do surfaces satisfy the Hirsch conjecture? (Those without boundary do).

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{c l f}(n, d) \leq n^{\log _{2} d+2}$.
(3) $H_{c \mid f}(n, d) \leq 2^{d-2} n$.
(4) $H_{\text {clf }}(n, n / 4) \geq \Omega\left(n^{2} / \log n\right)$.
(Kalai-Kleitman bound)
(Barnette-Larman bound)

This implies, for example:

A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question
Do surfaces satisfy the Hirsch conjecture? (Those without boundary do).

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$.
(3) $H_{\text {clf }}(n, d) \leq 2^{d-2} n$.
(Kalai-Kleitman bound)
(4) $H_{c l f}(n, n / 4) \geq \Omega\left(n^{2} / \log n\right)$. (Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question
Do surfaces satisfy the Hirsch conjecture? (Those without boundary do).

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{c l f}(n, d) \leq n^{\log _{2} d+2}$.
(3) $H_{c l f}(n, d) \leq 2^{d-2} n$.
(Kalai-Kleitman bound)
(4) $H_{c l f}(n, n / 4) \geq \Omega\left(n^{2} / \log n\right)$. (Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question

Do surfaces satisfy the Hirsch conjecture?

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)

(1) $H_{\text {clf }}(n, d) \geq H_{\bar{M}}(n, d) \geq H(n, d)$.
(2) $H_{c l f}(n, d) \leq n^{\log _{2} d+2}$.
(3) $H_{c l f}(n, d) \leq 2^{d-2} n$.
(Kalai-Kleitman bound)
(4) $H_{c l f}(n, n / 4) \geq \Omega\left(n^{2} / \log n\right)$. (Barnette-Larman bound)

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter greater than $2 n$.

Question

Do surfaces satisfy the Hirsch conjecture? (Those without boundary do).

$H_{c l f}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be two simplices. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most j from u). Call $V /$ the j-neighborhood of V. - Let i_{0} and j_{0} be the smallest values such that $U_{i 0}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{\text {clf }}(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i 0}$ and $V^{\prime} \in V_{i_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c \mid f}(n-1, d-1) .
$$

$H_{c l f}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be two simplices. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that U_{0} and $V_{j_{0}}$
contain more than half of the vertices. This implies $i_{0}-1$
and $j_{0}-1$ are at most $\left.H_{\text {dIf }}(\underline{n} / 2\rfloor, d\right)$.
- Let $u^{\prime} \in U_{i 0}$ and $V^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{\text {clf }}(n, d) \leq H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be two simplices. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be two simplices. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{\text {clf }}(\lfloor n / 2\rfloor, d)$.

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be two simplices. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{c l f}(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c l f}(n-1, d-1) .
$$

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be two simplices. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{c l f}(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c l f}(n-1, d-1) .
$$

So:

$$
d(u, v) \leq d\left(u, u^{\prime}\right)+d\left(u^{\prime}, v^{\prime}\right)+d(u, v) \leq
$$

$H_{\text {clf }}(n, d) \leq n^{\log _{2} d+2}$ (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

$$
H_{c l f}(n, d) \leq H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
$$

To prove the recursion:

- Let u and v be two simplices. For each $i \in \mathbb{N}$, let U_{i} be the i-neighborhood of u (the subcomplex consisting of all layers at distance at most i from u). Call V_{j} the j-neighborhood of v.
- Let i_{0} and j_{0} be the smallest values such that $U_{i_{0}}$ and $V_{j_{0}}$ contain more than half of the vertices. This implies $i_{0}-1$ and $j_{0}-1$ are at most $H_{c l f}(\lfloor n / 2\rfloor, d)$.
- Let $u^{\prime} \in U_{i_{0}}$ and $v^{\prime} \in V_{j_{0}}$ having a common vertex. Then:

$$
d\left(u^{\prime}, v^{\prime}\right) \leq H_{c l f}(n-1, d-1) .
$$

So:

$$
\begin{aligned}
d(u, v) & \leq d\left(u, u^{\prime}\right)+d\left(u^{\prime}, v^{\prime}\right)+d(u, v) \leq \\
& \leq 2 H_{c l f}(\lfloor n / 2\rfloor, d)+H_{c l f}(n-1, d-1)+2 .
\end{aligned}
$$

Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank d on n symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank d on n symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

A complete CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	113	114	124	134	144	244	344	444
			122	123	133	224	234	334		
				222	223	233	333			

Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank d on n symbols is the same as a CLF, except we allow a pure simplicial multicomplex Δ (simplices are multisets of vertices, with repetitions allowed)

An injective CLMF of length $d(n-1)$:

λ	3	4	5	6	7	8	9	10	11	12
Δ	111	112	122	222	223	233	333	334	344	444

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)
A Connected Laver (Multi)-Family with λ iniective or \triangle
complete cannot have length greater than $d(n-1)$.

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)
The diameter of a clmf of rank d on n symbols cannot exceed

$$
d(n-1) .
$$

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases.

out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)
A Connected Laver (Multi)-Family with λ iniective or \triangle complete cannot have length greater than $d(n-1)$.

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)
The diameter of a clmf of rank d on n symbols cannot exceed

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

> Theorem (Hähnle et al@polymath3, 2010)
> A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than $d(n-1)$.

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)
The diameter of a clmf of rank d on n symbols cannot exceed

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than $d(n-1)$.

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010) The diameter of a clmf of rank d on n symbols cannot exceed

Hähnle's Conjecture

"Complete" and "injective" clmf are two extremal cases. It turns out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or Δ complete cannot have length greater than $d(n-1)$.

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)

The diameter of a clmf of rank d on n symbols cannot exceed

$$
d(n-1) .
$$

A New Conjecture

> Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \leq 3, d \leq 2, n+d \leq 11$, or $6 n+d \leq 37$.

> If true, it would imply:

Coniecture
The diameter of a d-polytope (or any d-manifold with boundary) with n-facets cannot exceed

$$
d(n-d)+1
$$

A New Conjecture

Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \leq 3, d \leq 2, n+d \leq 11$, or $6 n+d \leq 37$.

If true, it would imply:
Conjecture
The diameter of a d-polytope (or any d-manifold with boundary) with n-facets cannot exceed

$$
d(n-d)+1
$$

A New Conjecture

Hähnle's Conjecture has been checked for all the values of n and d satisfying $n \leq 3, d \leq 2, n+d \leq 11$, or $6 n+d \leq 37$.

If true, it would imply:

Conjecture

The diameter of a d-polytope (or any d-manifold with boundary) with n-facets cannot exceed

$$
d(n-d)+1 .
$$

Thank you

TO BE CONTINUED???

"Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."

(V. Klee and P. Kleinschmidt, 1987)

Thank you

TO BE CONTINUED???

"Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."

(V. Klee and P. Kleinschmidt, 1987)

Thank you

TO BE CONTINUED???

> "Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."
(V. Klee and P. K'einschmid', 1987)

Thank you

TO BE CONTINUED???

"Finding a counterexample will be merely a small first step in the line of investigation related to the Hirsch conjecture."
(V. Klee and P. Kleinschmidt, 1987)

[^0]: Remark, in all definitions of $H_{\bullet}(n, d), n$ is the number of vertices and $d-1$ is the dimension.

[^1]: Remark, in all definitions of $H_{0}(n, d), n$ is the number of vertices and $d-1$ is the dimension.

[^2]: Remark, in all definitions of $H_{\bullet}(n, d), n$ is the number of
 vertices and $d-1$ is the dimension.

