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Polyhedra and polytopes

Definition
A (convex) polyhedron P is the intersection of a finite family of
affine half-spaces in Rd .

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Definition
A (convex) polytope P is the convex hull of a finite set of points
in Rd .

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Polytope = bounded polyhedron.

The dimension of P is the dimension of its affine hull.
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Faces of P

Let P be a polytope (or polyhedron) and let

H = {x ∈ Rd : a1x1 + · · · adxd ≤ a0}

be an affine half-space.

If P ⊂ H we say that ∂H ∩ P is a face of P.
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Faces of P

The “empty face” of P.
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Faces of P
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Faces of P

Faces of dimension 0 are called vertices.
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Faces of P

Faces of dimension 1 are called edges.
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Faces of P

Faces of dimension d − 1 (codimension 1) are called facets.
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The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected)
graph.

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected)
graph.

The diameter of G(P) (or of P) is the maximum distance among
its vertices:

δ(P) := max{d(u, v) : u, v ∈ V}.
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

polytope faces dimension n − d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k -prism k + 2 3 k − 1 bk/2c+ 1
n-cube 2n n n n
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...

Theorem (S. 2010+)
There is a 43-dim. polytope with 86 facets and diameter ≥ 44.
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty four years later...
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty four years later...

Theorem (Matschke-S.-Weibel 2011+)
There is a 20-dim. polytope with 40 facets and diameter ≥ 21.
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty five years later...
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty five years later...
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The Hirsch conjecture

Let δ(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty five years later...

“Polynomial Hirsch Conjecture”
Is there a polynomial upper bound for δ(P)? Is δ(P) ≤ 2(n− d)
a valid upper bound????
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Motivation: linear programming

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets and d dimensions.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves linear
programming by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a polynomial
time algorithm (for some pivot rule).
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:

The number of pivot steps [that the simplex method
takes] to solve a problem with m equality constraints in
n nonnegative variables is almost always at most a
small multiple of m, say 3m.

(M. Todd, 2011)
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:

The number of pivot steps [that the simplex method
takes] to solve a problem with m equality constraints in
n nonnegative variables is almost always at most a
small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2011)
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What do we know?

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Theorem [Kalai-Kleitman 1992]

H(n,d) ≤ nlog2 d+2, ∀n,d .

Theorem [Barnette 1967, Larman 1970]

H(n,d) ≤ n2d−3, ∀n,d .
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The d-step Theorem

Theorem (Klee-Walkup, 1967)

Let P be a polytope of dimension d, with n facets and diameter
δ. Then there is another polytope P ′ of dimension d + 1, with
n + 1 facets and diameter ≥ δ.

Corollary (d-step theorem)
For each n > d ∈ N, let H(n,d) denote the maximum diameter
among d-polytopes with n facets. Then

H(n,d) ≤ H(2n − 2d ,n − d).
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Wedging, a.k.a. one-point-suspension

P’

P

F f
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Wedging, a.k.a. one-point-suspension

v

d(u’, v’)=2

d(u, v)=2

u

F f

P’

P

u’

v’
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The construction

The construction of counter-examples has two ingredients:

1 A strong d-step theorem for prismatoids.
2 The construction of a prismatoid of dimension 5 and

“width” 6.
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Prismatoids

Definition
A prismatoid is a polytope Q with two (parallel) facets Q+ and
Q− containing all vertices.

Q+

Q−

Q

Definition
The width of a
prismatoid is the
dual-graph
distance from Q+

to Q−.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width δ. Then there is another prismatoid Q′ of dimension
d + 1, with n + 1 vertices and width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .

Corollary
In particular, if a prismatoid Q has width > d then there is
another prismatoid Q′ (of dimension n − d, with 2n − 2d vertices, and
width ≥ δ + n − 2d > n − d) that violates (the dual of) the Hirsch
conjecture.
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The strong d-step Theorem

Proof.

Q ⊂ R2

Q+

Q−
Q̃−

Q̃ ⊂ R3

Q̃+

w

Q̃− := o. p. s.v(Q−)

Q+

w

o. p. s.v(Q) ⊂ R3

v

u

u
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d . Its number
of vertices and facets is irrelevant...

Question
Do they exist?

3-prismatoids have width at most 3 (exercise).
4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].
5-prismatoids of width 6 exist [S., 2010] with 25 vertices
[Matschke-S.-Weibel 2011+].
5-prismatoids of arbitrarily large width exist
[Matschke-S.-Weibel 2011+].
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A 5-prismatoid of width > 5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.
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A 5-prismatoid of width > 5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

Q := conv

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0BBBBBBBBB@

x1 x2 x3 x4 x5
±18 0 0 0 1

0 ±18 0 0 1
0 0 ±45 0 1
0 0 0 ±45 1
±15 ±15 0 0 1

0 0 ±30 ±30 1
0 ±10 ±40 0 1
±10 0 0 ±40 1

1CCCCCCCCCA

0BBBBBBBBB@

x1 x2 x3 x4 x5
0 0 0 ±18 −1
0 0 ±18 0 −1
±45 0 0 0 −1

0 ±45 0 0 −1
0 0 ±15 ±15 −1
±30 ±30 0 0 −1
±40 0 ±10 0 −1

0 ±40 0 ±10 −1

1CCCCCCCCCA

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
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A 5-prismatoid of width > 5

Theorem (S. 2010)

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

Corollary
There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36,442 vertices,
and diameter 21.
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

1 Products of several copies of it (dimension increases).
2 Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter δ the number

ε(P) :=
δ

n − d
− 1 =

δ − (n − d)

n − d
.

E. g.: The excess of our non-Hirsch polytope with n − d = 20
and with diameter 21 is

21− 20
20

= 5%.
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Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

23



The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

23



The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

23



The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

n − d = (n1 + n2 − d)− d = (n1 − d) + (n2 − d)

δ = δ1 + δ2 − 1

δ1
n1−d −1 = δ2

n2−d −1 = ε ⇒ δ
n−d −1 = ε− 1

(n1−d)+(n2−d) .
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Many non-Hirsch polytopes

1 Taking products preserves the excess: for each k ∈ N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

2 Gluing several copies (slightly) decreases the excess.

Corollary
For each k ∈ N there is an infinite family of non-Hirsch
polytopes of fixed dimension 20k and with excess (tending to)

0.05
(

1− 1
k

)
.
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width δ with n vertices and dimension d the
quantity

δ − d
n − d

24
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Lemma
Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem
are

n − d , 2(n − d), δ + (n − 2d).

So, its excess is

δ + (n − 2d)− (n − d)

n − d
=
δ − d
n − d

.
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Prismatoids of large width won’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width δ ∼

√
(n). . . but their excess tends to

zero:

lim
δ − 5
n − 5

= lim
√

n − 5
n − 5

= 0.

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ' αn.

Their excess will now tend to α. So, we still get only polytopes
that violate Hirsch by a constant (“linear” Hirsch bound).
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Prismatoids of large width won’t help (much)

OK, can we be more optimistic? Can we hope for prismatoids
of width greater than linear?

In fixed dimension, certainly not:

Theorem
The width of a d-dimensional prismatoid with n vertices cannot
exceed 2d−3n.

Proof.
This is a general result for the (dual) diameter of a polytope
[Barnette, Larman, ∼1970].
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Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem
The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.
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Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem
The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.

Corollary
Using the Strong d-step Theorem for 5-prismatoids it is
impossible to violate the Hirsch conjecture by more than 33%.
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If you cannot prove it, generalize it. . .
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More general setting

Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes?

Strongly connected pure simplicial complexes. HC(n,d)

Pseudo-manifolds (w. or wo. bdry). Hpm(n,d), Hpm(n,d)

Simplicial manifolds (w. or wo. bdry). HM(n,d), HM(n,d)

Simplicial spheres (or balls). HS(n,d), HB(n,d),
. . .

Remark, in all definitions of H•(n,d), n is the number of
vertices and d − 1 is the dimension.
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Some easy remarks and a toy example

There are the following relations:

HC(n,d) = Hpm(n,d) ≥ HM(n,d) ≥ HB(n,d)
VI VI VI

Hpm(n,d) ≥ HM(n,d) ≥ HS(n,d)

In dimension one (graphs):

HC(n,2) = Hpm(n,2) = HM(n,2) = HB(n,2) = n − 1,

Hpm(n,2) = HM(n,2) = HS(n,2) =
⌊n

2

⌋
,
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The maximum diameter of pure simplicial complexes

In dimension two:

Theorem
2
9

(n − 1)2 < HC(n,3) = Hpm(n,3) <
1
4

n2.

In higher dimension:

Theorem

HC(kn, kd) >
1
2k HC(n,d)k .

Corollary

Ω

(
n

2d
3

9
d
3

)
< HC(n,d) = Hpm(n,d) <

(
n

d − 1

)
.
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Hpm(n, 3) > 2
9(n − 1)2

1 Without loss of generality assume n = 3k + 1.
2 With the first 2k + 1 vertices, construct k disjoint cycles of

length 2k + 1 (That is, decompose K2k+1 into k disjoint
Hamiltonian cycles).

3 Remove an edge from each cycle to make it a chain, and
join each chain to each of the remaining k vertices.

4 Glue together the k chains using k − 1 triangles.

In this way we get a chain of triangles of length

(2k + 1)k − 2 >
2
9

(n − 1)2.
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Hamiltonian cycles).

3 Remove an edge from each cycle to make it a chain, and
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The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

HC(kn, kd) > 1
2k HC(n, d)k

1 Let ∆ be a complex achieving HC(n,d). W.l.o.g. assume
its dual graph is a path.

2 Take the join ∆∗k of k copies of ∆. ∆∗k is a complex of
dimension kd − 1, with kn vertices and whose dual graph
is a k -dimensional grid of size HC(n,d). (It has
(HC(n,d) + 1)k maximal simplices).

3 In this grid we just want to find a long induced path. This
can easily be done using a fraction of 1

2k of the vertices.
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The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

So, pure simplicial complexes (even pseudo-manifolds) can
have exponential diameters.

What restriction should we put for (having at least hopes of)
getting polynomial diameters?
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The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

A special class of complexes

Definition
A connected layer family (CLF) of rank d on n symbols is a pure
simplicial complex ∆ of dimension d − 1 with n vertices,
together with a map

λ : facets(∆)→ Z

with the following property: for every simplex (of whatever
dimension) τ ∈ ∆ the values taken by λ in the star of τ form an
interval.

The length of a CLF is the difference between the maximum
and the minimum values taken by λ.
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Diameter of CLF’s

Let Hclf (n,d) := max length of a CLF of rank d on n symbols.
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for every σ ∈ ∆.

This shows that:

Hclf (n,d) ≥ HM(n,d).
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Let Hclf (n,d) := max length of a CLF of rank d on n symbols.

Example (Manifolds)
Simplicial manifolds, (with or without boundary) become CLF’s
as follows: take a simplex σ0 as root, and let λ(σ) := dist(σ0, σ),
for every σ ∈ ∆.

More generally, Hclf (n,d) is an upper bound for the diameter of
all complexes with connected links.
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Diameter of CLF’s

Let Hclf (n,d) := max length of a CLF of rank d on n symbols.
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Diameter of CLF’s

Let Hclf (n,d) := max length of a CLF of rank d on n symbols.

Example (A CLF of rank 2 and length ∼ 3n/2)

λ 0 1 2 3 4 5 6 7 8 9
13 14 35 36 57 58

∆ 12 34 56 78
24 23 46 45 68 67
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Diameter of CLF’s

Let Hclf (n,d) := max length of a CLF of rank d on n symbols.

Example (A CLF of rank 2 and length ∼ 3n/2)

λ 0 1 2 3 4 5 6 7 8 9
13 14 35 36 57 58

∆ 12 34 56 78
24 23 46 45 68 67

This shows that:

Hclf (n,3) ≥
⌊

3n
2

⌋
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The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss 2010)
1 Hclf (n,d) ≥ HM(n,d) ≥ H(n,d).
2 Hclf (n,d) ≤ nlog2 d+2. (Kalai-Kleitman bound)
3 Hclf (n,d) ≤ 2d−2n. (Barnette-Larman bound)
4 Hclf (n,n/4) ≥ Ω(n2/ log n).

This implies, for example:

Corollary (of part 3)
A surface (with or without boundary) cannot have diameter
greater than 2n.

Question
Do surfaces satisfy the Hirsch conjecture? (Those without
boundary do).
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The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families

Hclf (n, d) ≤ nlog2 d+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Hclf (n,d) ≤ Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.

To prove the recursion:
Let u and v be two simplices. For each i ∈ N, let Ui be the
i-neighborhood of u (the subcomplex consisting of all layers at
distance at most i from u). Call Vj the j-neighborhood of v .
Let i0 and j0 be the smallest values such that Ui0 and Vj0
contain more than half of the vertices. This implies i0 − 1
and j0 − 1 are at most Hclf (bn/2c,d).
Let u′ ∈ Ui0 and v ′ ∈ Vj0 having a common vertex. Then:

d(u′, v ′) ≤ Hclf (n − 1,d − 1).

So: d(u, v) ≤ d(u,u′) + d(u′, v ′) + d(u, v) ≤
≤ 2Hclf (bn/2c,d) + Hclf (n − 1,d − 1) + 2.
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Connected Layer Multi-families

Definition
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)
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Connected Layer Multi-families

Definition
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)

A complete CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 113 114 124 134 144 244 344 444

122 123 133 224 234 334
222 223 233 333
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Connected Layer Multi-families

Definition
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)

An injective CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 122 222 223 233 333 334 344 444
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Hähnle’s Conjecture

“Complete” and “injective” clmf are two extremal cases. It turns
out that in these two cases:

Theorem (Hähnle et al@polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or ∆
complete cannot have length greater than d(n − 1).

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)
The diameter of a clmf of rank d on n symbols cannot exceed

d(n − 1).
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A New Conjecture

Hähnle’s Conjecture has been checked for all the values of n
and d satisfying n ≤ 3, d ≤ 2, n + d ≤ 11, or 6n + d ≤ 37.

If true, it would imply:

Conjecture
The diameter of a d-polytope (or any d-manifold with boundary)
with n-facets cannot exceed

d(n − d) + 1.
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Thank you

T O B E C O N T I N U E D ? ? ?

“Finding a counterexample will be merely a small first
step in the line of investigation related to the Hirsch
conjecture.”

(V. Klee and P. Kleinschmidt, 1987)
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