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A (convex) polyhedron P is the intersection of a finite family of
affine half-spaces in RY.
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Polyhedra and polytopes

Definition
A (convex) polytope P is the convex hull of a finite set of points
in RY.
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Polyhedra and polytopes
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Polyhedra and polytopes

The dimension of P is the dimension of its affine hull.



Let P be a polytope (or polyhedron) and let
H={xecR%: a;x;+---agxq < a}

be an affine half-space.



Let P be a polytope (or polyhedron) and let
H={xecR%: a;x;+---agxq < a}
be an affine half-space.

If P C Hwe say that 9H N P is a face of P.
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Faces of P

The “empty face” of P.
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Faces of P
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Faces of P

Faces of dimension 0 are called vertices.
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Faces of P

Faces of dimension 1 are called edges.
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Faces of P

Faces of dimension d — 1 (codimension 1) are called facets.




The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families
000@0000 00000000000 0000000 0000000 00000000

The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected)
graph.
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The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected)

[ )
o=" \
\\.
The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a (finite, undirected)

[
o =" \
\\.
The diameter of G(P) (or of P) is the maximum distance among
its vertices:

d(P) := max{d(u,v) :u,v e V}.

[



Let §( P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-d.
polytope faces dimension n—d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k-prism k+2 3 k—1 |k/2] +1
n-cube 2n n n n



Let §(P) denote the diameter of the graph of a polytope P.
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Let §(P) denote the diameter of the graph of a polytope P.

For every polyhedron P with n facets and dimension d,

d(P)<n-—d.
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-—d.
polytope faces dimension n—d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k-prism k+2 3 k—1 |k/2]+1
n-cube 2n n n n



00000800 00000000000 0000000 0000000 00000000

Let 6(P) denote the diameter of the graph of a polytope P.

For every polyhedron P with n facets and dimension d,

d(P)<n-d.
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Let 6(P) denote the diameter of the graph of a polytope P.

For every polyhedron P with n facets and dimension d,

d(P)<n-d.
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Let 6(P) denote the diameter of the graph of a polytope P.

For every polyhedron P with n facets and dimension d,

d(P)<n-d.
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-d.

Fifty three years later...
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

(P)<n-d.
Fifty three years later...

Theorem (S. 2010+)
There is a 43-dim. polytope with 86 facets and diameter > 44.
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-d.

Fifty four years later...
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

(P)<n-d.
Fifty four years later...

Theorem (Matschke-S.-Weibel 2011+)
There is a 20-dim. polytope with 40 facets and diameter > 21.
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-d.

Fifty five years later...
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-d.

Fifty five years later...
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-d.

Fifty five years later...

Is there a polynomial upper bound for §(P)?
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The Hirsch conjecture

Let §(P) denote the diameter of the graph of a polytope P.

Conjecture: Warren M. Hirsch (1957)
For every polyhedron P with n facets and dimension d,

d(P)<n-d.

Fifty five years later...

Is there a polynomial upper bound for 6(P)? Is 6(P) <2(n—d)
a valid upper bound????



The set of feasible solutions P = {x ¢ R : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.

The optimal solution (if it exists) is always attained at a
vertex.

The simplex method [Dantzig 1947] solves linear
programming by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.

In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a polynomial
time algorithm (for some pivot rule).
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@ The set of feasible solutions P = {x ¢ RY : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.
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Motivation: linear programming

@ The set of feasible solutions P = {x e RY : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.

@ The optimal solution (if it exists) is always attained at a
vertex.
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Motivation: linear programming

@ The set of feasible solutions P = {x e RY : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.

@ The optimal solution (if it exists) is always attained at a
vertex.

@ The simplex method [Dantzig 1947] solves linear
programming by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.
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Motivation: linear programming

@ The set of feasible solutions P = {x e RY : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.

@ The optimal solution (if it exists) is always attained at a
vertex.

@ The simplex method [Dantzig 1947] solves linear
programming by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.

@ In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a polynomial
time algorithm (for some pivot rule).
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]).
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:

The number of pivot steps [that the simplex method
takes] to solve a problem with m equality constraints in
n nonnegative variables is almost always at most a

small multiple of m, say 3m.
(M. Todd, 2011)
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But:

The number of pivot steps [that the simplex method
takes] to solve a problem with m equality constraints in
n nonnegative variables is almost always at most a
small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2011)



Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

5(P) < n—d.

Theorem [Kalai-Kleitman 1992]
H(n,d) < n'°%9+2  yn d.

Theorem [Barnette 1967, Larman 1970]
H(n,d) < n29=3  vn,d.
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For every polytope P with n facets and dimension d,

5(P)<n-—d.
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For every polytope P with n facets and dimension d,

5(P)<n-—d.

H(n,d) < n'°%29+2 yn g,
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What do we know?

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

5(P)<n—d.

Theorem [Kalai-Kleitman 1992]

H(n,d) < n°%29+2  yn d.

Theorem [Barnette 1967, Larman 1970]
H(n,d) < n29=3  vn,d.
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The d-step Theorem

Theorem (Klee-Walkup, 1967)

Let P be a polytope of dimension d, with n facets and diameter
0. Then there is another polytope P’ of dimension d + 1, with
n+ 1 facets and diameter > ¢.
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The d-step Theorem

Theorem (Klee-Walkup, 1967)

Let P be a polytope of dimension d, with n facets and diameter
0. Then there is another polytope P’ of dimension d + 1, with
n+ 1 facets and diameter > ¢.

Corollary (d-step theorem)

Foreach n> d € N, let H(n, d) denote the maximum diameter
among d-polytopes with n facets. Then

H(n,d) < H(2n—2d,n— d).



O-0
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F v J
u
d(u, v)=2
v
u)
du’, v’)=2

13



The construction of counter-examples has two ingredients:

@ A strong d-step theorem for prismatoids.

@ The construction of a prismatoid of dimension 5 and
“width” 6.
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The construction of counter-examples has two ingredients:

@ A strong d-step theorem for prismatoids.

14
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The construction

The construction of counter-examples has two ingredients:

@ A strong d-step theorem for prismatoids.

@ The construction of a prismatoid of dimension 5 and
“width” 6.
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A prismatoid is a polytope Q with two (parallel) facets Q* and
Q™ containing all vertices.

‘

Q+

i

15
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A prismatoid is a polytope Q with two (parallel) facets Q* and
Q~ containing all vertices.

Definiton
o
o ’ The width of a
prismatoid is the
dual-graph
o distance from Qt
‘ to 0.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is
another prismatoid Q' (of dimension n — d, with 2n — 2d vertices, and
width > § + n— 2d > n — d) that violates (the dual of) the Hirsch
conjecture.
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0.p.s.,(Q) CR®
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d.

18
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?
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Width of prismatoids
So, to disprove the Hirsch Conjecture we only need to find a

prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
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@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010]
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010] with 25 vertices
[Matschke-S.-Weibel 2011+].
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010] with 25 vertices
[Matschke-S.-Weibel 2011+].

@ 5-prismatoids of arbitrarily large width exist
[Matschke-S.-Weibel 2011+].

18



The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.
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Asymptotic diameter
0000000

Simplicial complexes
0000000

A 5-prismatoid of width > 5

Theorem (S. 2010)

Connected layer families
00000000

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

Q := conv

X1 X2

+18 0
0 +18
0 0
0 0

+15 +15
0 0

0 £10 +40 O

+10 0

X3 X4 X5
0 0 1
0 0 1

+45 0 1
0 +45 1
0 0o 1

+30 £30 1

9
q

0

+40

X X2 X3 X5
0 0 0 £18 —1
0 0 +18 —1
+45 0 0 —1
0 £45 0 —1
0 0 +£15 £15 1
£30 +30 0 —1
+40 0 £10 —1
0 +£40 0 £10 —1
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The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.
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With the same ideas

There is a 5-prismatoid with 25 vertices and of width 6.

20



The counter-example(s)
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

20



The counter-example(s)
00000000080

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices,
and diameter 21.

20



The conjecture The counter-example(s) Asymptotic diameter Simplicial complexes Connected layer families
00000000 0000000000e 0000000 0000000 00000000

_| poly20dim21.ext

V-representation
begin
48 21 rational
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allbases
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Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter ¢ the number

) d—(n—d)

Pr=0—g 1= =g

E. g.: The excess of our non-Hirsch polytope with n — d = 20
and with diameter 21 is
21 - 20
20

= 5%.

bl
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Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter 6 the number

E(P)::nﬁd_1:5_n(ﬁ;d)'

bl
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter 6 the number

E(P)::nﬁd_1:5_n(ﬁ;d)'

E. g.: The excess of our non-Hirsch polytope with n — d = 20
and with diameter 21 is
21 -20
20

=5%.

bl



@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Giluing several copies (slightly) decreases the excess.

29
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

n—d=(m+n-d —-—d=(n —d)+(mn—Ad)
6=061+0d —1
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

n—-d=Mm+m—-d)—d=(m—-d)+(n—d)

0=201+d — 1
s 8 _ 5 _ 1
med 1 =pig—1=¢ = e — 1 = €~ m=ayrm=d)
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

Corollary

For each k € N there is an infinite family of non-Hirsch
polytopes of fixed dimension 20k and with excess (tending to)

y
0.05 <1 — k) .
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But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width.
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

24
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width ¢ with n vertices and dimension d the

quantity
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width ¢ with n vertices and dimension d the

quantity
0—d

n—d
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

25
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem

are
n—d, 2(n—d), d + (n—2d).
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem
are

n—d, 2(n—d), d + (n—2d).
So, its excess is

d+(n—-2d)—(n—d)
n—d

5-d
- n—d’

25
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In dimension 5, we know how to construct polytopes of
arbitrarily large width & ~ /(n)
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero:
075 _jm¥Yn=5 _

n-5 n—5 0.

lim

26
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero.
0-5 —Iimﬁ_5:0.

“mn—5_ n—5

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero.
0-5 —Iimﬁ_5:0.

“mn—5_ n—5

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to a.
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero.
0-5 —Iimﬁ_5:0.

“mn—5_ n—5

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to «.. So, we still get only polytopes
that violate Hirsch by a constant (“linear” Hirsch bound).

26



OK, can we be more optimistic?
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Prismatoids of large width won'’t help (much)

OK, can we be more optimistic? Can we hope for prismatoids
of width greater than linear?

27
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Prismatoids of large width won'’t help (much)

OK, can we be more optimistic? Can we hope for prismatoids
of width greater than linear?

In fixed dimension, certainly not:
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Prismatoids of large width won'’t help (much)

OK, can we be more optimistic? Can we hope for prismatoids
of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot
exceed 29-3n.
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Prismatoids of large width won'’t help (much)

OK, can we be more optimistic? Can we hope for prismatoids
of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot
exceed 29-3n.

Proof.

This is a general result for the (dual) diameter of a polytope
[Barnette, Larman, ~1970]. O

27



In fact, in dimension five we can tighten the upper bound a little
bit:
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In fact, in dimension five we can tighten the upper bound a little
bit:

The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.

28
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Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot
exceedn/3 + 1.

Corollary

Using the Strong d-step Theorem for 5-prismatoids it is
impossible to violate the Hirsch conjecture by more than 33%.

28
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If you cannot prove it, generalize it. ..

29
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Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes?
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More general setting

Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes?

@ Strongly connected pure simplicial complexes. Hc(n, d)

20
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More general setting

Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes?

@ Strongly connected pure simplicial complexes. Hc(n, d)
@ Pseudo-manifolds (w. or wo. bdry).  Hgm(n, d), Hom(n, d)
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Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes?
@ Strongly connected pure simplicial complexes. Hc(n, d)
@ Pseudo-manifolds (w. or wo. bdry).  Hgm(n, d), Hom(n, d)
@ Simplicial manifolds (w. or wo. bdry).  H;(n, d), Hy(n, d)
@ Simplicial spheres (or balls). Hs(n,d), Hg(n, d),
° ...
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More general setting

Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes?
@ Strongly connected pure simplicial complexes. Hc(n, d)
@ Pseudo-manifolds (w. or wo. bdry).  Hgm(n, d), Hom(n, d)
@ Simplicial manifolds (w. or wo. bdry).  H;(n, d), Hy(n, d)
@ Simplicial spheres (or balls). Hs(n,d), Hg(n, d),
° ...

Remark, in all definitions of H,(n, d), n is the number of
vertices and d — 1 is the dimension.

20
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There are the following relations:

HC(”? d) = I‘Im(n, d) 2 Hﬁ(nv d) > HB(”a d)
Vi Vi Vi
Hpm(”a d) > HM(”v d) > HS(nv d)
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Some easy remarks and a toy example

There are the following relations:
He(n,d) = Hpm(n,d) = Hy(n,d) = Hp(n d)
Vi Vi Vi
Hpm(n7 d) > HM(n) d) > HS(n7 d)
In dimension one (graphs):

Hc(n,2) = Hpm(n, 2) = Hy;(n,2) = Hg(n,2) = n -1,

Hom(n,2) = Hy(n,2) = Hs(n, 2) = LgJ ,

21
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In dimension two:
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In dimension two:

g(n— 1)2 < He(n,8) = Hgm(n,3) < %nz.

29
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In dimension two:

g(n— 1)2 < He(n,8) = Hgm(n,3) < %nz.

In higher dimension:

Ho(kn, kd) > o Ho(n, )

29
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The maximum diameter of pure simplicial complexes

In dimension two:

Theorem

2 1
§(n— 1)? < Ho(n,3) = Ham(n, 3) < an.

In higher dimension:

Theorem

’
Ho(kn, kd) > o He(n, d)k.

Corollary



@ Without loss of generality assume n = 3k + 1.

@ With the first 2k + 1 vertices, construct k disjoint cycles of
length 2k + 1 (That is, decompose Ky, 1 into k disjoint
Hamiltonian cycles).

© Remove an edge from each cycle to make it a chain, and
join each chain to each of the remaining k vertices.

@ Gilue together the k chains using k — 1 triangles.

In this way we get a chain of triangles of length

2k + 1)k —2 > g(n—1)2.

23
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@ Without loss of generality assume n = 3k + 1.

@ With the first 2k + 1 vertices, construct k disjoint cycles of
length 2k + 1
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Hp_m(na 3) > %(n - 1)2

@ Without loss of generality assume n = 3k + 1.

@ With the first 2k + 1 vertices, construct k disjoint cycles of
length 2k + 1 (That is, decompose Kok into k disjoint
Hamiltonian cycles).

29
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Hp_m(na 3) > %(n - 1)2

Asymptotic diameter Simplicial complexes Connected layer families

@ Without loss of generality assume n = 3k + 1.

@ With the first 2k + 1 vertices, construct k disjoint cycles of

length 2k + 1 (That is, decompose Kok into k disjoint
Hamiltonian cycles).

© Remove an edge from each cycle to make it a chain, and
join each chain to each of the remaining k vertices.
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@ Without loss of generality assume n = 3k + 1.

@ With the first 2k + 1 vertices, construct k disjoint cycles of
length 2k + 1 (That is, decompose Kok into k disjoint
Hamiltonian cycles).

© Remove an edge from each cycle to make it a chain, and
join each chain to each of the remaining k vertices.

@ Gilue together the k chains using k — 1 triangles.

In this way we get a chain of triangles of length

2k +1)k —2 > g(n—1)2.
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@ Let A be a complex achieving Hg(n, d). W.l.o.g. assume
its dual graph is a path.

@ Take the join A** of k copies of A. A*f is a complex of
dimension kd — 1, with kn vertices and whose dual graph
is a k-dimensional grid of size Hg(n, d). (It has
(He(n, d) + 1)k maximal simplices).

© In this grid we just want to find a long induced path. This
can easily be done using a fraction of 217 of the vertices.

24



@ Let A be a complex achieving Hg(n,d).
its dual graph is a path.

@ Take the join A** of k copies of A. A*¥ is a complex of
dimension kd — 1, with kn vertices and whose dual graph
is a k-dimensional of size Hg(n, d). (It has
(He(n, d) + 1)k maximal simplices).

© In this grid we just want to find a long induced path. This
can easily be done using a fraction of 217 of the vertices.
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@ Let A be a complex achieving Hg(n, d). W.l.o.g. assume
its dual graph is a path.

@ Take the join A** of k copies of A.
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Hc(kn, kd) > %Hc(n, d)k

@ Let A be a complex achieving Hg(n, d). W.l.o.g. assume
its dual graph is a path.

@ Take the join A*¥ of k copies of A. A*¥ is a complex of
dimension kd — 1, with kn vertices and whose dual graph
is a k-dimensional grid of size Hg(n, d). (It has
(He(n, d) 4+ 1)K maximal simplices).
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@ Let A be a complex achieving Hg(n, d). W.l.o.g. assume
its dual graph is a path.

@ Take the join A*¥ of k copies of A. A*¥ is a complex of
dimension kd — 1, with kn vertices and whose dual graph
is a k-dimensional grid of size Hg(n, d). (It has
(He(n, d) 4+ 1)K maximal simplices).

© In this grid we just want to find a long induced path. This
can easily be done using a fraction of 217 of the vertices.
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So, pure simplicial complexes (even pseudo-manifolds) can
have exponential diameters.

25
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So, pure simplicial complexes (even pseudo-manifolds) can
have exponential diameters.

What restriction should we put for (having at least hopes of)
getting polynomial diameters?

25



Definition
A (CLF) of rank d on n symbols is a pure

simplicial complex A of dimension d — 1 with n vertices,
together with a map

A : facets(A) — Z

with the following property: for every simplex (of whatever
dimension) 7 € A the values taken by A in the star of 7 form an
interval.

The length of a CLF is the difference between the maximum
and the minimum values taken by \.



Connected layer families
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A special class of complexes

Definition

A connected layer family (CLF) of rank d on n symbols is a pure
simplicial complex A of dimension d — 1 with n vertices,
together with a map

A : facets(A) — Z

26



Connected layer families
0000000

A special class of complexes

Definition

A connected layer family (CLF) of rank d on n symbols is a pure
simplicial complex A of dimension d — 1 with n vertices,
together with a map

A : facets(A) — Z

with the following property: for every simplex (of whatever
dimension) T € A the values taken by X in the star of 7 form an
interval.

26
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A special class of complexes

Definition
A connected layer family (CLF) of rank d on n symbols is a pure

simplicial complex A of dimension d — 1 with n vertices,
together with a map

A : facets(A) — Z

with the following property: for every simplex (of whatever
dimension) T € A the values taken by X in the star of 7 form an
interval.

The length of a CLF is the difference between the maximum
and the minimum values taken by \.

26



Let Hg¢(n, d) := max length of a CLF of rank d on n symbols.
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Diameter of CLF’s

Let Hy¢(n, d) := max length of a CLF of rank d on n symbols.

Simplicial manifolds, (with or without boundary) become CLF’s
as follows: take a simplex oqg as root, and let \(o) := dist(og, o),
for every o € A.

7
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Diameter of CLF’s

Let Hy¢(n, d) := max length of a CLF of rank d on n symbols.

Simplicial manifolds, (with or without boundary) become CLF’s
as follows: take a simplex oqg as root, and let \(o) := dist(og, o),
for every o € A.

This shows that:

HC/f(n7 d) > HM(”? d)

7
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Diameter of CLF’s

Let Hy¢(n, d) := max length of a CLF of rank d on n symbols.

Simplicial manifolds, (with or without boundary) become CLF’s
as follows: take a simplex oqg as root, and let \(o) := dist(og, o),
for every o € A.

More generally, Hg¢(n, d) is an upper bound for the diameter of
all complexes with connected links.

7



Let Hg¢(n, d) := max length of a CLF of rank d on n symbols.
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Diameter of CLF’s

Let Hgr(n, d) := max length of a CLF of rank d on n symbols.
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Let Hgr(n, d) := max length of a CLF of rank d on n symbols.
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Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
o Hclf(n7 d) > Hﬂ(na d) > H(na d)
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Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
(1] Hclf(n7 d) > Hﬂ(na d) > H(na d)
@ Hey(n,d) < nog29+2, (Kalai-Kleitman bound)
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Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
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@ Hy(n, d) < nlo9:9+2, (Kalai-Kleitman bound)
@ Hgr(n, d) <29-2n, (Barnette-Larman bound)
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Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
Q@ Her(n,d) > Hyi(n,d) > H(n,d).

@ Hgr(n,d) < nlo%0+2, (Kalai-Kleitman bound)
@ Hgr(n, d) <29-2n, (Barnette-Larman bound)
Q Her(n,n/4) > Q(n?/log n).
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Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
Q@ Her(n,d) > Hyi(n,d) > H(n,d).

@ Hgr(n,d) < nlo%0+2, (Kalai-Kleitman bound)
@ Hgr(n, d) <29-2n, (Barnette-Larman bound)
Q Hge(n,n/4) > Q(n?/logn).

This implies, for example:

29



Connected layer families
000e0000

Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
Q@ Her(n,d) > Hyi(n,d) > H(n,d).

@ Hyr(n, d) < nl092d+2, (Kalai-Kleitman bound)
@ Hgr(n, d) <29-2n, (Barnette-Larman bound)
Q Hge(n,n/4) > Q(n?/logn).

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter
greater than 2n.

29
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Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
Q@ Her(n,d) > Hyi(n,d) > H(n,d).

@ Hyr(n, d) < nl092d+2, (Kalai-Kleitman bound)
@ Hgr(n, d) <29-2n, (Barnette-Larman bound)
Q Hge(n,n/4) > Q(n?/logn).

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter
greater than 2n.

Question
Do surfaces satisfy the Hirsch conjecture?
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Theorem (Eisenbrand-H&hnle-Razborov-Rothvoss 2010)
Q@ Her(n,d) > Hyi(n,d) > H(n,d).

@ Hyr(n, d) < nl092d+2, (Kalai-Kleitman bound)
@ Hgr(n, d) <29-2n, (Barnette-Larman bound)
Q Hge(n,n/4) > Q(n?/logn).

This implies, for example:

Corollary (of part 3)

A surface (with or without boundary) cannot have diameter
greater than 2n.

Question

Do surfaces satisfy the Hirsch conjecture? (Those without
boundary do).

29
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Hgi(n, d) < n'°929+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:

Her(n, d) < He(Ln/2],d) + Her(n—1,d — 1) + 2.

40
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Hgz(n, d) < nl°929+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:
Heir(n, d) < Her(Ln/2], d) + Her(n—1,d = 1) + 2.

To prove the recursion:

@ Let v and v be two simplices. For each i € N, let U; be the
i-neighborhood of u (the subcomplex consisting of all layers at
distance at most i from u). Call V; the j-neighborhood of v.
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c/f(n d) < n'°% 9+2 (Kalai-Kleitman bound)

The Kalai-Kleitman bound follows from the following recursion:
Heir(n, d) < Her(Ln/2], d) + Her(n—1,d = 1) + 2.

To prove the recursion:

@ Let v and v be two simplices. For each i € N, let U; be the
i-neighborhood of u (the subcomplex consisting of all layers at
distance at most i from u). Call V; the j-neighborhood of v.

@ Let jp and jy be the smallest values such that U, and V),
contain more than half of the vertices.
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The Kalai-Kleitman bound follows from the following recursion:
Heir(n, d) < Her(Ln/2], d) + Her(n—1,d = 1) + 2.

To prove the recursion:

@ Let v and v be two simplices. For each i € N, let U; be the
i-neighborhood of u (the subcomplex consisting of all layers at
distance at most i from u). Call V; the j-neighborhood of v.

@ Let jp and jy be the smallest values such that U, and V),
contain more than half of the vertices. This implies iy — 1
and jo — 1 are at most Hg¢(| n/2], d).
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The Kalai-Kleitman bound follows from the following recursion:
Heir(n, d) < Her(Ln/2], d) + Her(n—1,d = 1) + 2.

To prove the recursion:
@ Let v and v be two simplices. For each i € N, let U; be the
i-neighborhood of u (the subcomplex consisting of all layers at
distance at most i from u). Call V; the j-neighborhood of v.

@ Let jp and jy be the smallest values such that U, and V),
contain more than half of the vertices. This implies iy — 1
and jo — 1 are at most Hg¢(| n/2], d).

@ Let v € Uj, and v’ € V) having a common vertex. Then:

d(Ul7 V/) < HC,f(n — 1,d — 1)

40
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The Kalai-Kleitman bound follows from the following recursion:
Heir(n, d) < Her(Ln/2], d) + Her(n—1,d = 1) + 2.

To prove the recursion:
@ Let v and v be two simplices. For each i € N, let U; be the
i-neighborhood of u (the subcomplex consisting of all layers at
distance at most i from u). Call V; the j-neighborhood of v.

@ Let jp and jy be the smallest values such that U, and V),
contain more than half of the vertices. This implies iy — 1
and jo — 1 are at most Hg¢(| n/2], d).

@ Let v € Uj, and v’ € V) having a common vertex. Then:

d(Ul7 V/) < HC,f(n — 1,d — 1)
So: d(u,v)<d(u,u)+d,V)+d(u,v) <

40
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C,,r(n d) < n'°9:9+2 (Kalai-Kleitman bound)
The Kalai-Kleitman bound follows from the following recursion:
Heir(n, d) < Her(Ln/2], d) + Her(n—1,d = 1) + 2.

To prove the recursion:

@ Let v and v be two simplices. For each i € N, let U; be the
i-neighborhood of u (the subcomplex consisting of all layers at
distance at most i from u). Call V; the j-neighborhood of v.

@ Let jp and jy be the smallest values such that U, and V),
contain more than half of the vertices. This implies iy — 1
and jo — 1 are at most Hg¢(| n/2], d).

@ Let v € Uj, and v’ € V) having a common vertex. Then:

d(Ul7 V/) < HC,f(n — 1,d — 1)

So:  d(u,v) <d(u,u)+d,V)+d(u,v) <
< 2Hg([n/2],d) + Her(n—1,d — 1) + 2.
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Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex A (simplices are multisets of vertices, with
repetitions allowed)
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Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex A (simplices are multisets of vertices, with
repetitions allowed)

A complete CLMF of length d(n— 1):

A 8] 4|56 7|89 ]10]11]12
A 111112113 [ 114 [ 124 [ 134 [ 144 [ 244 | 344 | 444
122 | 123 | 133 | 224 | 234 | 334
222 | 223 | 233 | 333
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Connected Layer Multi-families

Definition

A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex A (simplices are multisets of vertices, with
repetitions allowed)

An injective CLMF of length d(n— 1):

A 34|56 7|89 [10]11]12
A [111 112|122 222|223 | 233 | 333 | 334 | 344 | 444

a1



“Complete” and “injective” clmf are two extremal cases. It turns
out that in these two cases:

Theorem (Hahnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with X injective or A
complete cannot have length greater than d(n —1).

This suggests the following conjecture

Conjecture (Hahnle@polymath3, 2010)
The diameter of a clmf of rank d on n symbols cannot exceed

din—1).
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“Complete” and “injective” cImf are two extremal cases. It turns
out that in these two cases:
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Hahnle’s Conjecture

“Complete” and “injective” cImf are two extremal cases. It turns
out that in these two cases:

Theorem (Hahnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with X injective or A
complete cannot have length greater than d(n —1).
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Hahnle’s Conjecture

“Complete” and “injective” cImf are two extremal cases. It turns
out that in these two cases:

Theorem (Hahnle et al@polymath3, 2010)

A Connected Layer (Multi)-Family with X\ injective or A
complete cannot have length greater than d(n —1).

This suggests the following conjecture

Conjecture (Hahnle@polymath3, 2010)
The diameter of a clmf of rank d on n symbols cannot exceed

d(n—1).
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Hahnle’s Conjecture has been checked for all the values of n
and d satisfyingn <3,d<2,n+d <11,or6n+ d < 37.

If true, it would imply:

Conjecture

The diameter of a d-polytope (or any d-manifold with boundary)
with n-facets cannot exceed

d(n—d)+1.

43
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Hahnle’s Conjecture has been checked for all the values of n
and d satisfyingn <3,d<2,n+d <11,or6n+d < 37.
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A New Conjecture

Hahnle’s Conjecture has been checked for all the values of n
and d satisfyingn <3,d<2,n+d <11,or6n+d < 37.

If true, it would imply:

Conjecture

The diameter of a d-polytope (or any d-manifold with boundary)
with n-facets cannot exceed

din—d)+1.
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TO BE CONTINUED???

“Finding a counterexample will be merely a small first
step in the line of investigation related to the Hirsch
conjecture.”

(V. Klee and P. Kleinschmidt, 1987)
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Thank you

TO BE CONTINUED???

“Finding a counterexample will be merely a small first
step in the line of investigation related to the Hirsch
conjecture.”

(V. Klee and P. Kleinschmidt, 1987)
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