Polytopes of combinatorial degree 1

Arnau Padrol
Universitat Politècnica de Catalunya
11 July 2012
VIII Jornadas de Matemática Discreta y Algorítmica

joint work with Benjamin Nill

Polytopes and point configurations

What is a polytope?

Polytope Convex hull of a finite point set $A \subset \mathbb{R}^{d}$ \Leftrightarrow
Bounded intersection of finitely many half-spaces
Face Intersection with a supporting hyperplane Vertices, Edges, Facets Faces of dimension 0, 1, d-1.

$$
F \text { face of } \operatorname{conv}\{A\} \Rightarrow F=\operatorname{conv}\{A \cap F\}
$$

Interior faces

Given a point configuration $A, S \subseteq A$ is an interior face of a A if conv (S) does not lie on the boundary of conv A.

Definition

The combinatorial degree of a point configuration is

$$
\operatorname{deg}_{c}(A)=d+1-k
$$

where k is the smallest cardinality of an interior face of A.

Point configurations of degree 1

Theorem (Nill \& P.)

$A \subset \mathbb{R}^{d}$ has $\operatorname{deg}_{c}(A) \leq 1$ if and only if A is a k-fold pyramid over:
(1) a polygon with points on its boundary,
© a prism over a simplex with points on the "vertical" edges,

- a simplex with a vertex v and points on its adjacent edges.

Lattice polytopes

Lattice points in lattice polytopes

$\left|k P \cap \mathbb{Z}^{d}\right|: \#$ lattice points in multiples of a lattice d-polytope P :

Lattice points in lattice polytopes

$\left|k P \cap \mathbb{Z}^{d}\right|: \#$ lattice points in multiples of a lattice d-polytope P :

Ehrhart polynomial \& series

Ehrhart:

$$
k \mapsto\left|k P \cap \mathbb{Z}^{d}\right|
$$

is a polynomial.
Moreover,

$$
\sum_{k \geq 0}\left|(k P) \cap \mathbb{Z}^{d}\right| t^{k}=\frac{h_{P}^{*}(t)}{(1-t)^{d+1}}
$$

where h_{P}^{*} is a polynomial of degree $\leq d$.

Ehrhart theory: the h^{*}-polynomial

Definition

The degree of P is $\operatorname{deg}(P)=\operatorname{deg}\left(h_{P}^{*}\right)$.

Proposition (Batyrev \& Nill)

$d+1-\operatorname{deg}(P)$ is $\min k \in \mathbb{Z}_{>0}$ such that $k P$ has interior lattice points.
$P \cap \mathbb{Z}^{d}$ cannot have interior faces of cardinality $<d+1-\operatorname{deg}(P)$!

$$
\operatorname{deg}_{c}\left(P \cap \mathbb{Z}^{d}\right) \leq \operatorname{deg}(P)
$$

Lattice polytopes of degree 1

Theorem (Batirev \& Nill 2007)

Let P be lattice polytope. Then $\operatorname{deg}(P) \leq 1$ if and only if P is
(1) A Lawrence prism or,
(2) an exceptional simplex.

Triangulations

The generalized lower bound theorem

Definition

P simplicial d-polytope

$$
\begin{aligned}
& f \text {-vector } f_{i}(P) \text { : \# of } i \text {-faces of } P . \\
& h \text {-vector } \sum_{0 \leq i \leq d} h_{i}(P) x^{d-i}=\sum_{0 \leq i \leq d} f_{i-1}(P)(x-1)^{d-i} .
\end{aligned}
$$

Generalized Lower Bound Conjecture Theorem [McMullen\&Walkup 1971, Stanley 1980, Murai\&Nevo 2012]

Let P be a simplicial d-polytope, then
(1) $h_{i} \geq h_{i-1}$ for all $2 \leq i \leq\lfloor d / 2\rfloor$,
(2) $h_{i+1}=h_{i}$ if and only if P can be triangulated without interior faces of cardinality $\leq d-i$.

All triangulations of P avoid all interior faces of cardinality $d-\operatorname{deg}_{c} P$.

Lower bound theorem for balls

Theorem (Lower bound theorem for balls)
The size of a simplicial d-ball \mathcal{B} with n vertices is $|\mathcal{B}| \geq n-d$. $|\mathcal{B}|=n-d \Leftrightarrow \mathcal{B}$ has no interior $(d-2)$-cell.

Corollary

$\operatorname{deg}_{c}(A) \leq 1$ if and only if all triangulations of A are minimal.

Tverberg's Theorem

The m-core and m-split

Definition

A set of n points in $\mathbb{R}^{r}, x \in \mathbb{R}^{r}$

- x has depth m if \forall closed halfspace $\bar{h}: x \in \bar{h} \Rightarrow|\bar{h} \cap A| \geq m$.
- x is m-divisible if there are m disjoint subsets of $A S_{1}, \ldots, S_{m}$ with $x \in \operatorname{conv} S_{i}$.
- $\mathcal{C}_{m}(A):$ depth m points.
- $\mathcal{D}_{m}(A): m$-divisible points.

Theorem (Tverberg's Theorem)

$$
\mathcal{D}_{m}(A) \neq \emptyset \text { if } n \geq(m-1)(d+1)+1
$$

$$
\mathcal{D}_{m}(A) \subsetneq \mathcal{C}_{m}(A)
$$

Reformulation

A consequence of our theorem:

Theorem
In \mathbb{R}^{r}, for $|A|=n$,

$$
\mathcal{C}_{n-r-1} \subseteq \mathcal{D}_{n-r-2}
$$

Reformulation

A consequence of our theorem:
Theorem
In \mathbb{R}^{r}, for $|A|=n$,

$$
\mathcal{C}_{n-r-1} \subseteq \mathcal{D}_{n-r-2}
$$

Conjecture

In \mathbb{R}^{r}, for $|A|=n$,

$$
\mathcal{C}_{n-r-\delta} \subseteq \mathcal{D}_{n-r-2 \delta}
$$

Reformulation

A consequence of our theorem:
Theorem
In \mathbb{R}^{r}, for $|A|=n$,

$$
\mathcal{C}_{n-r-1} \subseteq \mathcal{D}_{n-r-2}
$$

Conjecture

In \mathbb{R}^{r}, for $|A|=n$,

$$
\mathcal{C}_{n-r-\delta} \subseteq \mathcal{D}_{n-r-2 \delta}
$$

Theorem

In \mathbb{R}^{r}, for $|A|=n$,

$$
\mathcal{C}_{n-r-\delta} \subseteq \mathcal{D}_{n-r-3 \delta}
$$

That's all!

Thank you!

