### Polytopes of combinatorial degree 1

### Arnau Padrol

#### Universitat Politècnica de Catalunya

### 11 July 2012 VIII Jornadas de Matemática Discreta y Algorítmica

joint work with Benjamin Nill

Arnau Padrol (UPC)

Polytopes of combinatorial degree 1

VIII JMDA 1 / 16

## Polytopes and point configurations

Arnau Padrol (UPC)

Polytopes of combinatorial degree 1

▲ 글 ▷ ♀ ○
VIII JMDA 2 / 16

イロト イポト イヨト イヨト

Polytope Convex hull of a finite point set  $A \subset \mathbb{R}^d$   $\Leftrightarrow$ Bounded intersection of finitely many half-spaces Face Intersection with a supporting hyperplane Vertices, Edges, Facets Faces of dimension 0, 1, d - 1.

F face of conv  $\{A\} \Rightarrow F = \operatorname{conv} \{A \cap F\}$ 





Given a point configuration  $A, S \subseteq A$  is an *interior face* of a A if conv (S) does not lie on the boundary of conv A.

### Definition

The *combinatorial degree* of a point configuration is

 $\deg_c(A)=d+1-k,$ 

where k is the smallest cardinality of an interior face of A.



### Theorem (Nill & P.)

- $A \subset \mathbb{R}^d$  has  $\deg_c(A) \leq 1$  if and only if A is a k-fold pyramid over:
  - a polygon with points on its boundary,
  - a prism over a simplex with points on the "vertical" edges,
  - a simplex with a vertex v and points on its adjacent edges.



## Lattice polytopes

999

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

 $|kP \cap \mathbb{Z}^d|$ : # lattice points in multiples of a lattice *d*-polytope *P*:



→ Ξ ►

 $|kP \cap \mathbb{Z}^d|$ : # lattice points in multiples of a lattice *d*-polytope *P*:



▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

### Definition

The *degree* of *P* is  $deg(P) = deg(h_P^*)$ .

## Proposition (Batyrev & Nill) $d + 1 - \deg(P)$ is min $k \in \mathbb{Z}_{>0}$ such that kP has interior lattice points.

 $P \cap \mathbb{Z}^d$  cannot have interior faces of cardinality  $< d + 1 - \deg(P)!$ 

## $\deg_c(P\cap\mathbb{Z}^d)\leq \deg(P)$

| Arnau Padrol (UPC) | Padrol (UPC) | Arnau Padrol ( |
|--------------------|--------------|----------------|
|--------------------|--------------|----------------|

イロト イポト イヨト イヨト

Theorem (Batirev & Nill 2007)

- Let P be lattice polytope. Then  $deg(P) \leq 1$  if and only if P is
  - A Lawrence prism or,
  - an exceptional simplex.



## Triangulations

Э **VIII JMDA** 10 / 16

590

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

### Definition

P simplicial d-polytope

*f*-vector  $f_i(P)$ : # of *i*-faces of *P*. *h*-vector  $\sum_{0 \le i \le d} h_i(P) x^{d-i} = \sum_{0 \le i \le d} f_{i-1}(P) (x-1)^{d-i}$ .

### Generalized Lower Bound Conjecture Theorem [McMullen&Walkup 1971, Stanley 1980, Murai&Nevo 2012]

Let P be a simplicial d-polytope, then

- *h<sub>i+1</sub> = h<sub>i</sub>* if and only if *P* can be triangulated without interior faces of cardinality ≤ *d* − *i*.

All triangulations of P avoid all interior faces of cardinality  $d - \deg_c P$ .

### Theorem (Lower bound theorem for balls)

The size of a simplicial d-ball  $\mathcal{B}$  with n vertices is  $|\mathcal{B}| \ge n - d$ .

 $|\mathcal{B}| = n - d \Leftrightarrow \mathcal{B}$  has no interior (d - 2)-cell.

### Corollary

 $\deg_{c}(A) \leq 1$  if and only if all triangulations of A are minimal.

## Tverberg's Theorem

э **VIII JMDA** 13 / 16

< ロト < 同ト < ヨト < ヨ

### Definition

#### A set of *n* points in $\mathbb{R}^r$ , $x \in \mathbb{R}^r$

- x has depth m if  $\forall$  closed halfspace  $\bar{h}$ :  $x \in \bar{h} \Rightarrow |\bar{h} \cap A| \ge m$ .
- x is *m*-divisible if there are *m* disjoint subsets of  $A S_1, \ldots, S_m$  with  $x \in \text{conv} S_i$ .
- $C_m(A)$ : depth *m* points.
- $\mathcal{D}_m(A)$ : *m*-divisible points.

### Theorem (Tverberg's Theorem)

$$\mathcal{D}_m(A) \neq \emptyset$$
 if  $n \geq (m-1)(d+1) + 1$ .

$$\mathcal{D}_m(A) \subsetneq \mathcal{C}_m(A)$$

VIII JMDA 14 / 16

イロト イポト イヨト イ

## Reformulation

A consequence of our theorem:

### Theorem In $\mathbb{R}^r$ , for |A| = n, $\mathcal{C}_{n-r-1} \subseteq \mathcal{D}_{n-r-2}$

- 2 **VIII JMDA** 15 / 16

590

イロト イポト イヨト イヨト

## Reformulation

A consequence of our theorem:

### Theorem

In  $\mathbb{R}^r$ , for |A| = n,

$$\mathcal{C}_{n-r-1}\subseteq \mathcal{D}_{n-r-2}$$

### Conjecture

In  $\mathbb{R}^r$ , for |A| = n,

$$\mathcal{C}_{n-r-\delta} \subseteq \mathcal{D}_{n-r-2\delta}$$

VIII JMDA 15 / 16

590

## Reformulation

A consequence of our theorem:

### Theorem

In  $\mathbb{R}^r$ , for |A| = n,

$$\mathcal{C}_{n-r-1}\subseteq \mathcal{D}_{n-r-2}$$

### Conjecture

In  $\mathbb{R}^r$ , for |A| = n,

$$\mathcal{C}_{n-r-\delta}\subseteq \mathcal{D}_{n-r-2\delta}$$

### Theorem

In  $\mathbb{R}^r$ , for |A| = n,

$$\mathcal{C}_{n-r-\delta} \subseteq \mathcal{D}_{n-r-\mathbf{3}\delta}$$

Arnau Padrol (UPC)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

# Thank you!

E **VIII JMDA** 16 / 16

590

イロト イヨト イヨト イヨト