Bounds on hyperbolicity constant of line graphs.
W. Carballosa, J. M. Rodríguez, J. M. Sigarreta, M. Villeta

VIII Jornadas de Matemática Discreta y Algorítmica.

Gromov hyperbolic spaces

Definition

Let X be a geodesic metric space and $x_{1}, x_{2}, x_{3} \in X$, a geodesic triangle $T=\left\{x_{1}, x_{2}, x_{3}\right\}$ is the union of the three geodesics $\left[x_{1} x_{2}\right]$, $\left[x_{2} x_{3}\right]$ and $\left[x_{3} x_{1}\right]$ in X.

$$
\begin{aligned}
& T \text { is } \delta \text {-thin, if any side of } T \text { is } \\
& \text { contained in a } \delta \text {-neighborhood of } \\
& \text { the union of the two other sides. } \\
& d\left(p,\left[x_{i} x_{j}\right] \cup\left[x_{j} x_{k}\right]\right) \leq \delta \quad \forall p \in\left[x_{i} x_{k}\right]
\end{aligned}
$$

Gromov hyperbolic spaces

Definition

Let X be a geodesic metric space and $x_{1}, x_{2}, x_{3} \in X$, a geodesic triangle $T=\left\{x_{1}, x_{2}, x_{3}\right\}$ is the union of the three geodesics $\left[x_{1} x_{2}\right]$, $\left[x_{2} x_{3}\right]$ and $\left[x_{3} x_{1}\right]$ in X.

T is δ-thin, if any side of T is contained in a δ-neighborhood of the union of the two other sides.

$$
d\left(p,\left[x_{i} x_{j}\right] \cup\left[x_{j} x_{k}\right]\right) \leq \delta \quad \forall p \in\left[x_{i} x_{k}\right]
$$

The space X is δ-hyperbolic (in the Gromov sense), if every geodesic triangle T in X is δ-thin.

Examples of hyperbolic spaces

- \mathbb{R}^{n} with Euclidean metric is hyperbolic if and only if $n=1$.

Examples of hyperbolic spaces

- \mathbb{R}^{n} with Euclidean metric is hyperbolic if and only if $n=1$.

- All \mathbb{R}-tree (a tree with edges of arbitrary lengths) is 0-hyperbolic.

Examples of hyperbolic spaces

- \mathbb{R}^{n} with Euclidean metric is hyperbolic if and only if $n=1$.

- All \mathbb{R}-tree (a tree with edges of arbitrary lengths) is 0-hyperbolic.

- The open unit disk (\mathbb{D}) with the Poincaré metric is $\log (1+\sqrt{2})$-hyperbolic.

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Step 1.
We have to consider an arbitrary geodesic triangle \mathbf{T}

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Step 1.
We have to consider an arbitrary geodesic triangle \mathbf{T}

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Step 2. for every $P \in \mathbf{T}$, calculate $\operatorname{dist}(P, \mathbf{A})$ with \mathbf{A} the union of the other two sides of the triangle to which P does not belong to.

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Step 2. for every $P \in \mathbf{T}$, calculate $\operatorname{dist}(P, \mathbf{A})$ with \mathbf{A} the union of the other two sides of the triangle to which P does not belong to.

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Step 2. for every $P \in \mathbf{T}$, calculate $\operatorname{dist}(P, \mathbf{A})$ with \mathbf{A} the union of the other two sides of the triangle to which P does not belong to.

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Step 2. for every $P \in \mathbf{T}$, calculate $\operatorname{dist}(P, \mathbf{A})$ with \mathbf{A} the union of the other two sides of the triangle to which P does not belong to.

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Step 2. for every $P \in \mathbf{T}$, calculate $\operatorname{dist}(P, \mathbf{A})$ with \mathbf{A} the union of the other two sides of the triangle to which P does not belong to.

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Paso 3. We have to take $\delta_{\mathbf{T}}:=\max _{P}(\operatorname{dist}(P, A))$.

Open Problem: When do we have a Gromov space?

Let \mathbf{X} be any geodesic metric space. ¿It is hyperbolic?
Repeat the steps over all the possible choices for T

$$
\delta_{\mathbf{X}}:=\sup _{T} \delta_{T}
$$

Why is important the hyperbolicity of graphs?

The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it.

Why is important the hyperbolicity of graphs?

The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it.

The hyperbolicity constant of a graph provides a measure of how much a graph resembles a tree.

Why is important the hyperbolicity of graphs?

The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it.

The hyperbolicity constant of a graph provides a measure of how much a graph resembles a tree.

It is interesting to obtain inequalities relating the hyperbolicity constant and other parameters of graphs. Another natural problem is to study the invariance of the hyperbolicity of graphs under appropriate transformations.

This work.

The main aim of this work is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of properties of the graph G.

This work.

The main aim of this work is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of properties of the graph G.

This work.

The main aim of this work is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of properties of the graph G.

- A graph G is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic.

This work.

The main aim of this work is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of properties of the graph G.

- A graph G is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic.
- We obtain some relations between the hyperbolicity constant of the line graph $L(G)$ of G and some natural properties of G such as its girth and its circumference.

This work.

The main aim of this work is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of properties of the graph G.

- A graph G is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic.
- We obtain some relations between the hyperbolicity constant of the line graph $L(G)$ of G and some natural properties of G such as its girth and its circumference.
- If $\left\{G_{n}\right\}$ is a T-decomposition of G, the line graph $\mathcal{L}(G)$ is hyperbolic if and only if $\sup _{n} \delta\left(\mathcal{L}\left(G_{n}\right)\right)$ is finite.

This work.

The main aim of this work is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of properties of the graph G.

- A graph G is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic.
- We obtain some relations between the hyperbolicity constant of the line graph $L(G)$ of G and some natural properties of G such as its girth and its circumference.
- If $\left\{G_{n}\right\}$ is a T-decomposition of G, the line graph $\mathcal{L}(G)$ is hyperbolic if and only if $\sup _{n} \delta\left(\mathcal{L}\left(G_{n}\right)\right)$ is finite.
- We characterize the graphs G with $\delta(\mathcal{L}(G))<k$.

Line Graph

Definition

The line graph $\mathcal{L}(G)$ of a graph G is a graph which has a vertex $V_{e_{i}} \in V(\mathcal{L}(G))$ for each edge e_{i} of G, and an edge joining $V_{e_{i}}$ and $V_{e_{j}}$ when $e_{i} \cap e_{j} \neq \varnothing$.

Some authors define the edges of
 line graph with length 1 or another fixed constant (k), but we also define the length of the edge $\left[V_{e_{i}}, V_{e_{j}}\right] \in E(\mathcal{L}(G))$ as $\left(L\left(e_{i}\right)+L\left(e_{j}\right)\right) / 2$.

Results

Theorem
Let G be any graph such that every edge has length k. Then there exists a ($k / 2$)-full $(1, k)$-quasi-isometry from G on its line graph $\mathcal{L}(G)$ and, consequently,
G is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic.
Furthermore, if G (respectively, $\mathcal{L}(G)$) is δ-hyperbolic, then $\mathcal{L}(G)$ (respectively, G) is δ^{\prime}-hyperbolic, where δ^{\prime} is a constant which just depends on δ and k.

Results

Theorem
For any graph G which every edge has length k, we have

$$
\frac{1}{12} \delta(G)-\frac{3 k}{4} \leq \delta(\mathcal{L}(G)) \leq 12 \delta(G)+18 k
$$

Results

Theorem
For any graph G which every edge has length k, we have

$$
\frac{g(G)}{4} \leq \delta(\mathcal{L}(G)) \leq \frac{c(G)}{4}+2 k
$$

Results

Theorem
For any graph G which every edge has length k, we have

$$
\frac{g(G)}{4} \leq \delta(\mathcal{L}(G)) \leq \frac{c(G)}{4}+2 k
$$

Theorem
If G is a graph with n vertices v_{1}, \ldots, v_{n}, then

$$
\delta(\mathcal{L}(G))+\delta(G) \leq \frac{k}{8} \sum_{i=1}^{n}\left(\operatorname{deg}_{G}\left(v_{i}\right)\right)^{2}
$$

T-decompositions

T-decompositions

We say that the family of subgraphs $\left\{G_{n}\right\}_{n}$ of G is a T-decomposition of G if the graph R is a tree.

T-decompositions

We say that the family of subgraphs $\left\{G_{n}\right\}_{n}$ of G is a T-decomposition of G if the graph R is a tree.

Theorem
If $\left\{G_{n}\right\}_{n}$ is any T-decomposition of any graph G, then

$$
\sup _{n} \delta\left(\mathcal{L}\left(G_{n}\right)\right) \leq \delta(\mathcal{L}(G)) \leq \sup _{n} \delta\left(\mathcal{L}\left(G_{n}\right)\right)+k
$$

Results

Theorem
If G is any graph with $\delta(\mathcal{L}(G))<k$, then there are just two possibilities: $\delta(\mathcal{L}(G))=0$ or $\delta(\mathcal{L}(G))=3 k / 4$. Furthermore,

- $\delta(\mathcal{L}(G))=0$ if and only if G is a tree with maximum degree $\Delta \leq 2$,
- $\delta(\mathcal{L}(G))=3 k / 4$ if and only if G is either a tree with maximum degree $\Delta=3$ or isomorphic to C_{3}.

Results

Theorem
If G is any graph with $\delta(\mathcal{L}(G))<k$, then there are just two possibilities: $\delta(\mathcal{L}(G))=0$ or $\delta(\mathcal{L}(G))=3 k / 4$. Furthermore,

- $\delta(\mathcal{L}(G))=0$ if and only if G is a tree with maximum degree $\Delta \leq 2$,
- $\delta(\mathcal{L}(G))=3 k / 4$ if and only if G is either a tree with maximum degree $\Delta=3$ or isomorphic to C_{3}.

Theorem
If G is any graph with $\delta(G)<k$, then $\delta(\mathcal{L}(G)) \leq 7 k / 4$.

Graphs with edges of arbitrary lengths

We define a function $h: P M_{\mathcal{L}} V(\mathcal{L}(G)) \longrightarrow P M V(G)$
Lemma
For every $x, y \in h(\mathcal{L}(G))$, we have

$$
d_{G}(x, y)=d_{\mathcal{L}(G)}\left(h^{-1}(x), h^{-1}(y)\right)
$$

Graphs with edges of arbitrary lengths

We define a function $h: P M_{\mathcal{L}} V(\mathcal{L}(G)) \longrightarrow P M V(G)$
Lemma
For every $x, y \in h(\mathcal{L}(G))$, we have

$$
d_{G}(x, y)=d_{\mathcal{L}(G)}\left(h^{-1}(x), h^{-1}(y)\right)
$$

Proposition

For every $x, y \in \mathcal{L}(G)$ we have

$$
d_{\mathcal{L}(G)}(x, y)-2 I_{\max } \leq d_{G}(h(x), h(y)) \leq d_{\mathcal{L}(G)}(x, y)
$$

with $I_{\text {max }}=\sup _{e \in E(G)} L(e)$.

Graphs with edges of arbitrary lengths

Theorem
Let G be a graph and consider $\mathcal{L}(G)$ the line graph of G. Then

$$
\delta(G) \leq \delta(\mathcal{L}(G)) \leq 5 \delta(G)+3 I_{\max }
$$

with $I_{\text {max }}=\sup _{e \in E(G)} L(e)$.

Graphs with edges of arbitrary lengths

Theorem
Let G be a graph and consider $\mathcal{L}(G)$ the line graph of G. Then

$$
\delta(G) \leq \delta(\mathcal{L}(G)) \leq 5 \delta(G)+3 I_{\max }
$$

with $I_{\text {max }}=\sup _{e \in E(G)} L(e)$.

Corollary

Let G be any graph such that every edge has length k and consider $\mathcal{L}(G)$ the line graph of G. Then

$$
\delta(G) \leq \delta(\mathcal{L}(G)) \leq 5 \delta(G)+\frac{5 k}{2}
$$

Thanks for your attention.

W. Carballosa J. M. Rodríguez J. M. Sigarreta M. Villeta

