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Gromov hyperbolic spaces

Definition

Let X be a geodesic metric space and x1, x2, x3 ∈ X, a geodesic
triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2],
[x2x3] and [x3x1] in X .
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T is δ-thin, if any side of T is
contained in a δ-neighborhood of
the union of the two other sides.

d(p, [xixj ]∪[xjxk ]) ≤ δ ∀p ∈ [xixk ]
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T is δ-thin, if any side of T is
contained in a δ-neighborhood of
the union of the two other sides.

d(p, [xixj ]∪[xjxk ]) ≤ δ ∀p ∈ [xixk ]

The space X is δ-hyperbolic (in the Gromov sense), if every
geodesic triangle T in X is δ-thin.
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Examples of hyperbolic spaces

• R
n with Euclidean metric is hyperbolic if and only if n = 1.

R
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• All R-tree (a tree with edges of arbitrary lengths) is 0-hyperbolic.
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• All R-tree (a tree with edges of arbitrary lengths) is 0-hyperbolic.
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• The open unit disk (D) with the Poincaré metric is
log

(

1 +
√

2
)

-hyperbolic.
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the other two sides of the triangle to which P does not belong to.
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Open Problem: When do we have a Gromov space?

Let X be any geodesic metric space. ¿It is hyperbolic?

Paso 3. We have to take δT := maxP (dist(P ,A)).

x

y

w

P



Introduction Edges of constant lengths Edges of arbitrary lengths.

Open Problem: When do we have a Gromov space?

Let X be any geodesic metric space. ¿It is hyperbolic?

Repeat the steps over all the possible choices for T

δX := sup
T

δT

.
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The study of hyperbolic graphs is an interesting topic since the
hyperbolicity of a geodesic metric space is equivalent to the
hyperbolicity of a graph related to it.
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Why is important the hyperbolicity of graphs?

The study of hyperbolic graphs is an interesting topic since the
hyperbolicity of a geodesic metric space is equivalent to the
hyperbolicity of a graph related to it.

The hyperbolicity constant of a graph provides a measure of how
much a graph resembles a tree.

It is interesting to obtain inequalities relating the hyperbolicity
constant and other parameters of graphs. Another natural problem
is to study the invariance of the hyperbolicity of graphs under
appropriate transformations.
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This work.

The main aim of this work is to obtain information about the
hyperbolicity constant of the line graph L(G ) in terms of
properties of the graph G .

• A graph G is hyperbolic if and only if L(G ) is hyperbolic.

• We obtain some relations between the hyperbolicity constant
of the line graph L(G) of G and some natural properties of G
such as its girth and its circumference.

• If {Gn} is a T-decomposition of G , the line graph L(G ) is
hyperbolic if and only if supn δ(L(Gn)) is finite.

• We characterize the graphs G with δ(L(G )) < k.
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Line Graph

Definition

The line graph L(G ) of a graph G is a graph which has a vertex
Vei

∈ V (L(G )) for each edge ei of G , and an edge joining Vei
and

Vej
when ei ∩ ej 6= ∅.

Some authors define the edges of
line graph with length 1 or
another fixed constant (k), but
we also define the length of the
edge [Vei

,Vej
] ∈ E (L(G )) as

(L(ei ) + L(ej ))/2.
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Results

Theorem
Let G be any graph such that every edge has length k. Then there
exists a (k/2)-full (1, k)-quasi-isometry from G on its line graph
L(G ) and, consequently,

G is hyperbolic if and only if L(G ) is hyperbolic.

Furthermore, if G (respectively, L(G )) is δ-hyperbolic, then L(G )
(respectively, G) is δ′-hyperbolic, where δ′ is a constant which just
depends on δ and k.
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Results

Theorem
For any graph G which every edge has length k, we have

1

12
δ(G ) − 3k

4
≤ δ(L(G )) ≤ 12 δ(G ) + 18k.



Introduction Edges of constant lengths Edges of arbitrary lengths.

Results
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g(G )

4
≤ δ(L(G )) ≤ c(G )

4
+ 2k.



Introduction Edges of constant lengths Edges of arbitrary lengths.

Results

Theorem
For any graph G which every edge has length k, we have

g(G )

4
≤ δ(L(G )) ≤ c(G )

4
+ 2k.

Theorem
If G is a graph with n vertices v1, . . . , vn, then

δ(L(G )) + δ(G ) ≤ k

8

n
∑

i=1

(degG (vi ))
2.
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T-decompositions

We say that the family of subgraphs {Gn}n of G is a
T-decomposition of G if the graph R is a tree.

Theorem
If {Gn}n is any T-decomposition of any graph G, then

sup
n

δ(L(Gn)) ≤ δ(L(G )) ≤ sup
n

δ(L(Gn)) + k .
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Results

Theorem
If G is any graph with δ(L(G )) < k, then there are just two
possibilities: δ(L(G )) = 0 or δ(L(G )) = 3k/4. Furthermore,

• δ(L(G )) = 0 if and only if G is a tree with maximum degree
∆ ≤ 2,

• δ(L(G )) = 3k/4 if and only if G is either a tree with
maximum degree ∆ = 3 or isomorphic to C3.
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Results

Theorem
If G is any graph with δ(L(G )) < k, then there are just two
possibilities: δ(L(G )) = 0 or δ(L(G )) = 3k/4. Furthermore,

• δ(L(G )) = 0 if and only if G is a tree with maximum degree
∆ ≤ 2,

• δ(L(G )) = 3k/4 if and only if G is either a tree with
maximum degree ∆ = 3 or isomorphic to C3.

Theorem
If G is any graph with δ(G ) < k, then δ(L(G )) ≤ 7k/4.
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Graphs with edges of arbitrary lengths

We define a function h : PMLV (L(G )) −→ PMV (G )

Lemma
For every x , y ∈ h(L(G )), we have

dG (x , y) = dL(G)(h
−1(x), h−1(y)).
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Graphs with edges of arbitrary lengths

We define a function h : PMLV (L(G )) −→ PMV (G )

Lemma
For every x , y ∈ h(L(G )), we have

dG (x , y) = dL(G)(h
−1(x), h−1(y)).

Proposition

For every x , y ∈ L(G ) we have

dL(G)(x , y) − 2lmax ≤ dG (h(x), h(y)) ≤ dL(G)(x , y),

with lmax = supe∈E(G) L(e).
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Graphs with edges of arbitrary lengths

Theorem
Let G be a graph and consider L(G ) the line graph of G . Then

δ(G ) ≤ δ(L(G )) ≤ 5δ(G ) + 3lmax ,

with lmax = supe∈E(G) L(e).
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Graphs with edges of arbitrary lengths

Theorem
Let G be a graph and consider L(G ) the line graph of G . Then

δ(G ) ≤ δ(L(G )) ≤ 5δ(G ) + 3lmax ,

with lmax = supe∈E(G) L(e).

Corollary

Let G be any graph such that every edge has length k and
consider L(G ) the line graph of G . Then

δ(G ) ≤ δ(L(G )) ≤ 5δ(G ) +
5k

2
.



Introduction Edges of constant lengths Edges of arbitrary lengths.

Thanks for your attention.

W. Carballosa J. M. Rodŕıguez J. M. Sigarreta M. Villeta
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