Self-dual codes over \mathbb{Z}_k from rectangular association schemes

Muhammad Bilal, Joaquim Borges, Cristina Fernández-Córdoba

Universitat Autònoma de Barcelona

JMDA 2012, July 11-13, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Introduction

- \mathbb{Z}_k -linear codes
- Association schemes
- 3-class association schemes and self-dual codes

2 Rectangular association schemes

3 Self-dual codes from rectangular association schemes

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

4 Future Work

5 Bibliography

 Introduction
 Rectangular association schemes
 Self-dual codes from rectangular association schemes
 Future Work
 Bibliography

 •0000
 00
 0000000
 0000000
 0000000
 00000000

\mathbb{Z}_k -linear codes

- C is a \mathbb{Z}_k -linear code; that is, C is an additive subgroup of \mathbb{Z}_k .
- The dual of a code C is $C^{\perp} = \{ w \in \mathbb{Z}_k \mid w \cdot v = 0, \forall v \in C \}.$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• The code is said to be *self-dual* if it is equal to its dual and *self-orthogonal* if it is contained in its dual.

 Introduction
 Rectangular association schemes
 Self-dual codes from rectangular association schemes
 Future Work
 Bibliography

 0000
 00
 0000000
 0000000
 0000000
 00000000

Association Schemes

- Let X be a finite set, |X| = v. Let R_i be a subset of $X \times X$, $\forall i \in \mathcal{I} = \{0, \dots, d\}, d > 0, \ \Re = \{R_i\}_{i \in \mathcal{I}}.$
- We say that (X, \Re) is a *d*-class association scheme if the following properties are satisfied:
 - (i) $R_0 = \{(x, x) : x \in X\}$ is the identity relation.
 - (ii) $\forall x, y \in X, \exists i \in \mathcal{I} \text{ such that } (x, y) \in R_i \text{ for exactly one } i.$
 - (iii) $\forall i \in \mathcal{I}, \exists i' \in \mathcal{I} \text{ such that } R_i^t = R_{i'}, \text{ where } R_i^t = \{(x, y) : (y, x) \in R_i\}.$
 - (iv) If $(x, y) \in R_k$, the number of $z \in X$ such that $(x, z) \in R_i$ and $(z, y) \in R_j$ is a constant p_{ij}^k .

 A d-class association scheme with d ≤ 4 is always commutative, [1], meaning that p^k_{ij} = p^k_{ii}, for all i, j, k ∈ I.

D. G. Higman.

Coherent Configurations.

Geom. Dedicata, vol. 4, pp. 1-32, (1975).

• The adjacency matrix A_i for the relation R_i , $i \in \mathcal{I}$ is:

$$(A_i)_{x,y} = \begin{cases} 1, & if \ (x,y) \in R_i, \\ 0, & otherwise. \end{cases}$$

• The conditions (i)-(iv) in the definition of (X, \Re) are equivalent to:

(i)
$$A_0 = I$$
 (the identity matrix).
(ii) $\sum_{i \in \mathcal{I}} A_i = J$ (the all-ones matrix).
(iii) $\forall i \in \mathcal{I}, \exists i' \in \mathcal{I}$, such that $A_i = A_{i'}^t$.
(iv) $\forall i, j \in \mathcal{I}, A_i A_j = \sum_{k \in \mathcal{I}} p_{ij}^k A_k$.

- If the association scheme is symmetric, then $A_i = A_i^t$, for all $i \in \mathcal{I}$.
- If the association scheme is commutative, then $A_iA_j = A_jA_i$, for all $i, j \in \mathcal{I}$.

3-class association schemes and self-dual codes

- Let (X, \Re) be a 3-class association scheme.
- The adjacency matrix for R₀ is I and the adjacency matrices of R₁, R₂ and R₃ are A₁, A₂ and J − I − A₁ − A₂, respectively.

Lemma

If (X, \Re) is a 3-class association scheme then the following equations hold:

(i)
$$A_1J = JA_1 = p_{11}^0 J$$
, $A_2J = JA_2 = p_{22}^0 J$.

(ii) $A_1A_2 = A_2A_1 = p_{12}^0I + p_{12}^1A_1 + p_{12}^2A_2 + p_{12}^3(J - I - A_1 - A_2).$

Note that the number of ones per row (or column) in A_1 is p_{11}^0 , A_2 is p_{22}^0 and A_3 is p_{33}^0 .

• For arbitrary values of $r, s, t, u \in \mathbb{Z}_k$

$$Q(r, s, t, u) = rA_0 + sA_1 + tA_2 + uA_3$$

= $(r - u) I + (s - u) A_1 + (t - u) A_2 + uJ.$

• The generator matrix for a code generated using *pure* construction is

$$\mathcal{P}(r, s, t, u) = (I \mid Q(r, s, t, u)).$$

• The generator matrix for a code generated using *bordered* construction is

$$\mathcal{B}(r, s, t, u) = \begin{pmatrix} 1 & 0 \dots 0 & a & 1 \dots 1 \\ 0 & & c \\ \vdots & I & \vdots & Q(r, s, t, u) \\ 0 & & c & \end{pmatrix}$$

• We write Q, \mathcal{P} and \mathcal{B} for Q(r, s, t, u), $\mathcal{P}(r, s, t, u)$ and $\mathcal{B}(r, s, t, u)$.

Rectangular association schemes

Definition

Consider two sets A and B with $|A| = n \ge 2$ and $|B| = m \ge 2$. Let $X = A \times B$ and define the binary relations over X:

$$\begin{aligned} R_0 &= \left\{ ((x,y), (x,y)) \in X^2 \right\}; \\ R_1 &= \left\{ ((x,y), (x,y')) \in X^2 \middle| y \neq y' \right\}; \\ R_2 &= \left\{ ((x,y), (x',y)) \in X^2 \middle| x \neq x' \right\}; \\ R_3 &= \left\{ ((x,y), (x',y')) \in X^2 \middle| x \neq x' \text{ and } y \neq y' \right\} \end{aligned}$$

 (X, \Re) is a symmetric 3-class association scheme with parameters:

$$\begin{split} &v=nm, p_{11}^0=m-1; p_{22}^0=n-1; p_{33}^0=(m-1)\left(n-1\right);\\ &p_{11}^1=m-2; p_{23}^1=p_{32}^1=n-1; p_{33}^1=\left(n-1\right)\left(m-2\right);\\ &p_{13}^2=p_{31}^2=m-1; p_{22}^2=n-2; p_{33}^2=\left(n-2\right)\left(m-1\right);\\ &p_{12}^3=p_{31}^2=1; p_{31}^3=p_{13}^3=m-2;\\ &p_{23}^2=p_{32}^2=n-2=p_{33}^3=\left(n-2\right)\left(m-2\right);\\ &\text{and } p_{ij}^k=0, \text{ for all other cases.} \end{split}$$

Introduction	Rectangular association schemes	Self-dual codes from rectangular association schemes	Future Work Bibliography
00000	0	0000000	

Lemma

If (X, \Re) is a $n \times m$ symmetric rectangular association scheme, then the following equations hold:

(i)
$$A_1J = JA_1 = (m-1)J$$
, $A_2J = JA_2 = (n-1)J$,
 $J^2 = n^2m^2J$;
(ii) $A_1^2 = (m-1)I + (m-2)A_1$; $A_2^2 = (n-1)I + (n-2)A_2$;
(iii) $A_1A_2 = A_2A_1 = A_3 = J - I - A_1 - A_2$.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Self-dual codes from rectangular association schemes

- The case of binary self-dual codes from non-symmetric 3-class association schemes was studied in [1].
- For the symmetric case the number of conditions and equations increase.
- We limit ourselves to the rectangular association scheme $n \times m \ (n, m \ge 2).$
- M. Bilal, J. Borges, S. T. Dougherty, C. Fernández-Córdoba.
 Binary Self-dual codes from 3-class association schemes.
 III International Castle Meeting on Coding Theory and Applications, UAB vol. 5 , pp: 59 - 64.UAB- (September 2011). ISBN: 978-84-490-2688-1.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Introduction	Rectangular association schemes	Self-dual codes from rectangular association schemes	Future Work	Bibliography
00000	00	0000000		

 \bullet For a code generated by ${\mathcal P}$ to be self-dual we need

$$(I \mid Q)(I \mid Q)^t = \mathbf{0}.$$

Namely, we need $QQ^t = -I$.

• For the code generated by \mathcal{B} to be self-dual we need the following:

$$1 + a^2 + vb^2 = 0; (1)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$ac + b(r + s\kappa + t\kappa + u(v - 2\kappa - 1)) = 0;$$
 (2)

$$I + c^2 J + Q Q^T = \mathbf{0}.$$
 (3)

Let
$$\rho = r - u$$
, $\sigma = s - u$ and $\tau = t - u$. We can write Equation $QQ^t = Q^2$ as

$$Q^{2} = \left[\rho^{2} + \sigma^{2} (m-1) + \tau^{2} (n-1) - 2\sigma\tau\right] I + \left[2\rho\sigma + \sigma^{2} (m-2) - 2\sigma\tau\right] A_{1} + \left[2\rho\tau + \tau^{2} (n-2) - 2\sigma\tau\right] A_{1} + \left[u\left[2\rho + 2\sigma (m-1) + 2\tau (n-1) + un^{2}m^{2}\right] + 2\sigma\tau\right] J.$$
(4)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

For the code generated by ${\mathcal P}$ to be self-orthogonal we need

$$\rho^{2} + \sigma^{2} (m-1) + \tau^{2} (n-1) - 2\sigma\tau = -1,$$

$$2\rho\sigma + \sigma^{2} (m-2) - 2\sigma\tau = 0,$$

$$2\rho\tau + \tau^{2} (n-2) - 2\sigma\tau = 0,$$

$$u \left[2\rho + 2\sigma (m-1) + 2\tau (n-1) + un^{2}m^{2} \right] + 2\sigma\tau = 0.$$
(5)

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

For a code generated by \mathcal{B} to be self-orthogonal, along with Equations (1) and (2), we need

$$\rho^{2} + \sigma^{2} (m-1) + \tau^{2} (n-1) - 2\sigma\tau = -1;$$

$$2\rho\sigma + \sigma^{2} (m-2) - 2\sigma\tau = 0;$$

$$2\rho\tau + \tau^{2} (n-2) - 2\sigma\tau = 0;$$

$$u \left[2\rho + 2\sigma (m-1) + 2\tau (n-1) + un^{2}m^{2} \right] + 2\sigma\tau = -c^{2}.$$
(6)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem

Let C be a code generated from a $n \times m$ rectangular association scheme over \mathbb{Z}_k by using the pure or the bordered construction. Let $k = 2^{\alpha_0} p_1^{\alpha_1} \cdots p_r^{\alpha^r}$ be the prime factor decomposition of k. If C is a self-dual code, then

$$\alpha_0 \leq 1 \quad \text{and} \quad p_i \equiv 1 \pmod{4} \quad \forall i = 1, \dots, r.$$
 (7)

Moreover, if (7) is satisfied, then there exist values of n and m such that C is a self-dual code.

Example

There exists a self-dual code over \mathbb{Z}_k from 3-class rectangular association scheme when $k = 2, 5, 10, 13, 17, 25, 26, \ldots$

Example

For n = 2 and m = 6. The adjacency matrices are:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example

The code C generated by \mathcal{P} , with $Q = 2I + 4A_1$, is a self-dual code over \mathbb{Z}_5 . We can generate two self-dual codes over \mathbb{Z}_5 with \mathcal{B} , using $Q = 2I + 4A_1$ with $a \equiv 2 \pmod{5}$ or $a \equiv 3 \pmod{5}$ along with $b \equiv c \equiv 0 \pmod{5}$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Future Work

We have generated binary self-dual codes from 3-class association schemes, BDF11, and we have also generated self-dual codes over \mathbb{Z}_k from 3-class association schemes.

• We want to generate self-dual codes from Hamming and Johnson 3-class association schemes over \mathbb{Z}_k .

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Bibliography

- S. T. Dougherty, J. L. Kim, and P. Solé. Double Circulant Codes from Two Class Association Schemes. Advances in Mathematics of Communications, vol. 1, no. 1, pp. 45-64, (2007).
 - E. Rains and N. J. A. Sloane.

Self-dual codes in the Handbook of Coding Theory, V. S. Pless and W. C. Huffman.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

eds., Elsevier, Amsterdam, pp. 177-294, (1998).

Introduction	Rectangular association schemes	Self-dual codes from rectangular association schemes	Future Work Bibliography
00000	00	0000000	

Thank You

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ