Self-dual codes over \mathbb{Z}_{k} from rectangular association schemes

Muhammad Bilal, Joaquim Borges, Cristina Fernández-Córdoba

Universitat Autònoma de Barcelona

JMDA 2012, July 11-13, 2012

Outline

(1) Introduction

- \mathbb{Z}_{k}-linear codes
- Association schemes
- 3-class association schemes and self-dual codes
(2) Rectangular association schemes
(3) Self-dual codes from rectangular association schemes

4 Future Work
(5) Bibliography

\mathbb{Z}_{k}-linear codes

- C is a \mathbb{Z}_{k}-linear code; that is, C is an additive subgroup of \mathbb{Z}_{k}.
- The dual of a code C is $C^{\perp}=\left\{w \in \mathbb{Z}_{k} \mid w \cdot v=0, \forall v \in C\right\}$.
- The code is said to be self-dual if it is equal to its dual and self-orthogonal if it is contained in its dual.

Association Schemes

- Let X be a finite set, $|X|=v$. Let R_{i} be a subset of $X \times X$, $\forall i \in \mathcal{I}=\{0, \ldots, d\}, d>0, \Re=\left\{R_{i}\right\}_{i \in \mathcal{I}}$.
- We say that (X, \Re) is a d-class association scheme if the following properties are satisfied:
(i) $R_{0}=\{(x, x): x \in X\}$ is the identity relation.
(ii) $\forall x, y \in X, \exists i \in \mathcal{I}$ such that $(x, y) \in R_{i}$ for exactly one i.
(iii) $\forall i \in \mathcal{I}, \exists i^{\prime} \in \mathcal{I}$ such that $R_{i}^{t}=R_{i^{\prime}}$, where $R_{i}^{t}=\left\{(x, y):(y, x) \in R_{i}\right\}$.
(iv) If $(x, y) \in R_{k}$, the number of $z \in X$ such that $(x, z) \in R_{i}$ and $(z, y) \in R_{j}$ is a constant $p_{i j}^{k}$.
- A d-class association scheme with $d \leq 4$ is always commutative, [1], meaning that $p_{i j}^{k}=p_{j i}^{k}$, for all $i, j, k \in \mathcal{I}$.
D. G. Higman.

Coherent Configurations.
Geom.Dedicata, vol. 4, pp. 1-32, (1975).

- The adjacency matrix A_{i} for the relation $R_{i}, i \in \mathcal{I}$ is:

$$
\left(A_{i}\right)_{x, y}=\left\{\begin{array}{lc}
1, & \text { if }(x, y) \in R_{i} \\
0, & \text { otherwise }
\end{array}\right.
$$

- The conditions $(i)-(i v)$ in the definition of (X, \Re) are equivalent to:
(i) $A_{0}=I$ (the identity matrix).
(ii) $\sum_{i \in \mathcal{I}} A_{i}=J$ (the all-ones matrix).
(iii) $\forall i \in \mathcal{I}, \exists i^{\prime} \in \mathcal{I}$, such that $A_{i}=A_{i^{\prime}}^{t}$.
(iv) $\forall i, j \in \mathcal{I}, \quad A_{i} A_{j}=\sum_{k \in \mathcal{I}} p_{i j}^{k} A_{k}$.
- If the association scheme is symmetric, then $A_{i}=A_{i}^{t}$, for all $i \in \mathcal{I}$.
- If the association scheme is commutative, then $A_{i} A_{j}=A_{j} A_{i}$, for all $i, j \in \mathcal{I}$.

3-class association schemes and self-dual codes

- Let (X, \Re) be a 3-class association scheme.
- The adjacency matrix for R_{0} is I and the adjacency matrices of R_{1}, R_{2} and R_{3} are A_{1}, A_{2} and $J-I-A_{1}-A_{2}$, respectively.

Lemma

If (X, \Re) is a 3-class association scheme then the following equations hold:
(i) $A_{1} J=J A_{1}=p_{11}^{0} J, A_{2} J=J A_{2}=p_{22}^{0} J$.
(ii) $A_{1} A_{2}=A_{2} A_{1}=p_{12}^{0} I+p_{12}^{1} A_{1}+p_{12}^{2} A_{2}+p_{12}^{3}\left(J-I-A_{1}-A_{2}\right)$.

Note that the number of ones per row (or column) in A_{1} is p_{11}^{0}, A_{2} is p_{22}^{0} and A_{3} is p_{33}^{0}.

- For arbitrary values of $r, s, t, u \in \mathbb{Z}_{k}$

$$
\begin{aligned}
Q(r, s, t, u) & =r A_{0}+s A_{1}+t A_{2}+u A_{3} \\
& =(r-u) I+(s-u) A_{1}+(t-u) A_{2}+u J .
\end{aligned}
$$

- The generator matrix for a code generated using pure construction is

$$
\mathcal{P}(r, s, t, u)=(I \mid Q(r, s, t, u)) .
$$

- The generator matrix for a code generated using bordered construction is

$$
\mathcal{B}(r, s, t, u)=\left(\begin{array}{c|c|c|c}
1 & 0 \ldots 0 & a & 1 \ldots 1 \\
\hline 0 & & c & \\
\vdots & I & \vdots & Q(r, s, t, u) \\
0 & & c &
\end{array}\right)
$$

- We write Q, \mathcal{P} and \mathcal{B} for $Q(r, s, t, u), \mathcal{P}(r, s, t, u)$ and $\mathcal{B}(r, s, t, u)$.

Rectangular association schemes

Definition

Consider two sets A and B with $|A|=n \geq 2$ and $|B|=m \geq 2$. Let $X=A \times B$ and define the binary relations over X :

$$
\begin{aligned}
& R_{0}=\left\{((x, y),(x, y)) \in X^{2}\right\} ; \\
& R_{1}=\left\{\left((x, y),\left(x, y^{\prime}\right)\right) \in X^{2} \mid y \neq y^{\prime}\right\} ; \\
& R_{2}=\left\{\left((x, y),\left(x^{\prime}, y\right)\right) \in X^{2} \mid x \neq x^{\prime}\right\} ; \\
& R_{3}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in X^{2} \mid x \neq x^{\prime} \text { and } y \neq y^{\prime}\right\} .
\end{aligned}
$$

(X, \Re) is a symmetric 3-class association scheme with parameters:

$$
\begin{aligned}
& v=n m, p_{11}^{0}=m-1 ; p_{22}^{0}=n-1 ; p_{33}^{0}=(m-1)(n-1) ; \\
& p_{11}^{1}=m-2 ; p_{23}^{1}=p_{32}^{1}=n-1 ; p_{33}^{1}=(n-1)(m-2) ; \\
& p_{13}^{2}=p_{31}^{2}=m-1 ; p_{22}^{2}=n-2 ; p_{33}^{2}=(n-2)(m-1) ; \\
& p_{12}^{3}=p_{21}^{3}=1 ; p_{31}^{3}=p_{13}^{3}=m-2 ; \\
& p_{23}^{2}=p_{32}^{2}=n-2=p_{33}^{3}=(n-2)(m-2) ; \\
& \text { and } p_{i j}^{k}=0, \text { for all other cases. }
\end{aligned}
$$

Lemma

If (X, \Re) is a $n \times m$ symmetric rectangular association scheme, then the following equations hold:
(i) $A_{1} J=J A_{1}=(m-1) J, A_{2} J=J A_{2}=(n-1) J$, $J^{2}=n^{2} m^{2} J$
(ii) $A_{1}^{2}=(m-1) I+(m-2) A_{1}$; $A_{2}^{2}=(n-1) I+(n-2) A_{2}$;
(iii) $A_{1} A_{2}=A_{2} A_{1}=A_{3}=J-I-A_{1}-A_{2}$.

Self-dual codes from rectangular association schemes

- The case of binary self-dual codes from non-symmetric 3-class association schemes was studied in [1].
- For the symmetric case the number of conditions and equations increase.
- We limit ourselves to the rectangular association scheme $n \times m(n, m \geq 2)$.

圊
M. Bilal, J. Borges, S. T. Dougherty, C. Fernández-Córdoba.

Binary Self-dual codes from 3-class association schemes.
III International Castle Meeting on Coding Theory and Applications, UAB vol. 5, pp: 59-64.UAB- (September 2011). ISBN:
978-84-490-2688-1.

- For a code generated by \mathcal{P} to be self-dual we need

$$
(I \mid Q)(I \mid Q)^{t}=\mathbf{0}
$$

Namely, we need $Q Q^{t}=-I$.

- For the code generated by \mathcal{B} to be self-dual we need the following:

$$
\begin{array}{r}
1+a^{2}+v b^{2}=0 \\
a c+b(r+s \kappa+t \kappa+u(v-2 \kappa-1))=0 \\
I+c^{2} J+Q Q^{T}=\mathbf{0} \tag{3}
\end{array}
$$

For the code generated by \mathcal{P} to be self-orthogonal we need

$$
\begin{aligned}
\rho^{2}+\sigma^{2}(m-1)+\tau^{2}(n-1)-2 \sigma \tau & =-1, \\
2 \rho \sigma+\sigma^{2}(m-2)-2 \sigma \tau & =0, \\
2 \rho \tau+\tau^{2}(n-2)-2 \sigma \tau & =0, \\
u\left[2 \rho+2 \sigma(m-1)+2 \tau(n-1)+u n^{2} m^{2}\right]+2 \sigma \tau & =0 .
\end{aligned}
$$

For a code generated by \mathcal{B} to be self-orthogonal, along with Equations (1) and (2), we need

$$
\begin{align*}
\rho^{2}+\sigma^{2}(m-1)+\tau^{2}(n-1)-2 \sigma \tau & =-1 ; \\
2 \rho \sigma+\sigma^{2}(m-2)-2 \sigma \tau & =0 ; \\
2 \rho \tau+\tau^{2}(n-2)-2 \sigma \tau & =0 ; \\
u\left[2 \rho+2 \sigma(m-1)+2 \tau(n-1)+u n^{2} m^{2}\right]+2 \sigma \tau & =-c^{2} . \tag{6}
\end{align*}
$$

Theorem

Let C be a code generated from a $n \times m$ rectangular association scheme over \mathbb{Z}_{k} by using the pure or the bordered construction. Let $k=2^{\alpha_{0}} p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha^{r}}$ be the prime factor decomposition of k. If C is a self-dual code, then

$$
\begin{equation*}
\alpha_{0} \leq 1 \quad \text { and } \quad p_{i} \equiv 1 \quad(\bmod 4) \forall i=1, \ldots, r . \tag{7}
\end{equation*}
$$

Moreover, if (7) is satisfied, then there exist values of n and m such that C is a self-dual code.

Example

There exists a self-dual code over \mathbb{Z}_{k} from 3-class rectangular association scheme when $k=2,5,10,13,17,25,26, \ldots$

Example

For $n=2$ and $m=6$. The adjacency matrices are:

$$
A_{0}=I, A_{1}=\left[\begin{array}{llllllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right],
$$

Example

The code C generated by \mathcal{P}, with $Q=2 I+4 A_{1}$, is a self-dual code over \mathbb{Z}_{5}.
We can generate two self-dual codes over \mathbb{Z}_{5} with \mathcal{B}, using $Q=2 I+4 A_{1}$ with $a \equiv 2(\bmod 5)$ or $a \equiv 3(\bmod 5)$ along with $b \equiv c \equiv 0(\bmod 5)$.

Future Work

We have generated binary self-dual codes from 3-class association schemes, BDF11, and we have also generated self-dual codes over \mathbb{Z}_{k} from 3-class association schemes.

- We want to generate self-dual codes from Hamming and Johnson 3-class association schemes over \mathbb{Z}_{k}.

Bibliography

R
S. T. Dougherty, J. L. Kim, and P. Solé.

Double Circulant Codes from Two Class Association Schemes. Advances in Mathematics of Communications, vol. 1, no. 1, pp. 45-64, (2007).E. Rains and N. J. A. Sloane.

Self-dual codes in the Handbook of Coding Theory, V. S. Pless and W. C. Huffman.
eds., Elsevier, Amsterdam, pp. 177-294, (1998).

Thank You

