Modular translations and retractions of numerical semigroups

Aureliano M. Robles-Pérez

Universidad de Granada

A talk based on joint works with José Carlos Rosales

VIII Jornadas de Matemática Discreta y Algorítmica
Almería, July 11-13, 2012

- $\mathbb{N}=\{0,1,2, \ldots\}$.
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.

Definition

- A numerical semigroup is a subset S of \mathbb{N} that is closed under addition, $0 \in S$ and $\mathbb{N} \backslash S$ is finite.
- $\mathrm{H}(S)=\mathbb{N} \backslash S$
(gaps)
- $\mathrm{F}(S)=\max (\mathbb{Z} \backslash S) \quad$ (Frobenius number)
(if $S \neq \mathbb{N}$, then $\mathrm{F}(S)=\max (\mathrm{H}(S))$)
- $\mathrm{g}(\mathrm{S})=\sharp(\mathrm{H}(\mathrm{S})) \quad$ (genus)
- $\mathrm{m}(S)=\min (S \backslash\{0\}) \quad$ (multiplicity)
- If $A \subseteq \mathbb{N}$ is a nonempty set,

$$
\langle A\rangle=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{1}, \ldots, a_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{N}\right\} .
$$

Lemma

- $\langle A\rangle$ is a numerical semigroup if and only if $\operatorname{gcd}\{A\}=1$.
- If $S=\langle A\rangle$, then A is a system of generators of S.
- In addition, if no proper subset of A generates S, then A is a minimal system of generators of S.

Lemma

- Every numerical semigroup admits a unique minimal system of generators, which in addition is finite.
- The cardinality of the minimal system of generators of S is called the embedding dimension of S and will be denoted by e(S).

Example

$$
\begin{gathered}
S=\{0,5,7,9,10,12,14, \rightarrow\}= \\
\{0,5,7,9,10,12\} \cup\{z \in \mathbb{N} \mid z \geq 14\}
\end{gathered}
$$

- $\mathrm{H}(\mathrm{S})=\{1,2,3,4,6,8,11,13\}$
- $\mathrm{F}(\mathrm{S})=13$
- $\mathrm{g}(\mathrm{S})=8$
- $\langle 5,7,9\rangle$ is the minimal system of generators of S
- $\mathrm{e}(S)=3$
- Let S be a numerical semigroup, $m \in S \backslash\{0\}$.

Definition

- The Apéry set of m in S is the set $\operatorname{Ap}(S, m)=\{s \in S \mid s-m \notin S\}$.

Lemma

- $\operatorname{Ap}(S, m)=\{w(0)=0, w(1), \ldots, w(m-1)\}$, where $w(i)$ is the least element of S congruent with i modulo m, for all $i \in\{0,1, \ldots, m-1\}$
- Moreover,

$$
\begin{aligned}
& z \in S \text { if and only if } z \geq w(z \bmod m) . \\
& \mathrm{F}(S)=\max \{\operatorname{Ap}(S, m)\}-m . \\
& \mathrm{g}(S)=\frac{1}{m}(w(0)+w(1)+\cdots+w(m-1))-\frac{m-1}{2} .
\end{aligned}
$$

Example

$$
S=\{0,5,7,9,10,12,14, \rightarrow\}=\langle 5,7,9\rangle
$$

- $\mathrm{H}(\mathrm{S})=\{1,2,3,4,6,8,11,13\}$
- $\mathrm{F}(S)=13$
- $\mathrm{g}(\mathrm{S})=8$
- $\operatorname{Ap}(S, 10)=\{0,21,12,23,14,5,16,7,18,9\}$
- $\max \{\operatorname{Ap}(S)\}-10=23-10=13$
- $\frac{0+21+12+23+14+5+16+7+18+9}{10}-\frac{10-1}{2}=8$
- If x, y are integers and $y \neq 0$, then we denote by $x \bmod y$ the remainder of the division of x by y.
- Let S be a numerical semigroup, $m \in S \backslash\{0\}$, and $a \in \mathbb{N}$.

Definition

- Modular translation: $\mathrm{T}(S, a, m)=\{s+$ as $\bmod m \mid s \in S\}$.
- Modular retraction: $\mathrm{R}(S, a, m)=\{s-$ as $\bmod m \mid s \in S\}$.
- We can take $a<m$ without loss of generality.

Some examples with modular translations

$$
S=\{0,5,7,9,10,12,14, \rightarrow\}=\langle 5,7,9\rangle
$$

- $\mathrm{T}(S, 1,10)=\langle 10,14,18,22,26\rangle$ (no numerical semigroup)
- $\mathrm{T}(S, 2,10)=\langle 5,11,17,18,24\rangle$ (numerical semigroup)
- $\mathrm{T}(S, 3,10)=\langle 8,10,22\rangle$ (no numerical semigroup)
- $\mathrm{T}(S, 4,10)=\langle 5\rangle$ (no numerical semigroup)
- $\mathrm{T}(S, 5,10)=\langle 10,12,14,16,18\rangle$ (no numerical semigroup)
- $\mathrm{T}(S, 6,10)=\langle 5,9,13\rangle$ (numerical semigroup)
- $T(S, 7,10)=\langle 10,12,16,18\rangle$ (no numerical semigroup)
- $\mathrm{T}(S, 8,10)=\langle 5,11,13,16\rangle$ (numerical semigroup)
- $\mathrm{T}(S, 9,10)=\langle 10\rangle$ (no numerical semigroup)

Observe that $T(S, a, 10)$ is always a submonoid of $(\mathbb{N},+)$.

- Let S be a numerical semigroup, $m \in S \backslash\{0\}$, and $a \in \mathbb{N}$.

Proposition

- $\mathrm{T}(S, a, m)$ is a submonoid of $(\mathbb{N},+)$.
- $\mathrm{T}(S, a, m)$ is a numerical semigroup if and only if $\operatorname{gcd}(a+1, m)=1$.

Problems with modular retractions

$$
S=\{0,5,7,9,10,12,14, \rightarrow\}=\langle 5,7,9\rangle
$$

- $R(S, 1,10)=\langle 10\rangle$ (no numerical semigroup)
- $R(S, 2,10): 1 \in, 2 \notin($ no submonoid of $(\mathbb{N},+))$
- $R(S, 3,10): 2 \in, 4 \notin($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 4,10)$: $-1 \in($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 5,10): 4 \in, 8 \notin($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 6,10)=\langle 5\rangle$ (no numerical semigroup)
- $R(S, 7,10):-2 \in($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 8,10): 1 \in, 2 \notin($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 9,10)=\langle 4,10\rangle$ (no numerical semigroup)

A better example with modular retractions

$$
S=\{0,5,7,9,10,12,14, \rightarrow\}=\langle 5,7,9\rangle
$$

- $\mathrm{R}(S, 1,9)=\langle 9\rangle$ (no numerical semigroup)
- $R(S, 2,9)=\langle 2,9\rangle$ (numerical semigroup)
- $\mathrm{R}(S, 3,9):-1 \in($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 4,9)=\langle 3\rangle$ (no numerical semigroup)
- $\mathrm{R}(S, 5,9):-2 \in($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 6,9): 1,2 \in, 3 \notin($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 7,9):-3 \in($ no submonoid of $(\mathbb{N},+))$
- $\mathrm{R}(S, 8,9)$: $1,2 \in, 3 \notin($ no submonoid of $(\mathbb{N},+))$
- Let S be a numerical semigroup, $m \in S \backslash\{0\}$, and $a \in \mathbb{N}$.

Proposition

$\mathrm{R}(S, a, m)$ is a numerical semigroup if and only if

- $\operatorname{gcd}(a-1, m)=1$;
- if $s_{1}, s_{2} \in S$ and $a s_{1} \bmod m+a s_{2} \bmod m \geq m$, then $s_{1}+s_{2}-m \in S$.
- Let $\operatorname{Ap}(S, m)=\{w(0)=0, w(1), \ldots, w(m-1)\}$.

Proposition

$\mathrm{R}(S, a, m)$ is a numerical semigroup if and only if

- $\operatorname{gcd}(a-1, m)=1$;
- if $w(i)+w(j) \in \operatorname{Ap}(S, m)$, then ai $\bmod m+a j \bmod m<m$.
- Let S be a numerical semigroup, $m \in S \backslash\{0\}$, $a \in \mathbb{N}$ such that $\operatorname{gcd}(a+1, m)=1$, and $d=\operatorname{gcd}(a, m)$.
- Let $\operatorname{Ap}(S, m)=\{w(0)=0, w(1), \ldots, w(m-1)\}$.

Theorem

- $\operatorname{Ap}(\mathrm{T}(S, a, m), m)=\{w(i)+$ ai $\bmod m \mid i \in\{0,1, \ldots, m-1\}\}$.

Proposition

- $\mathrm{g}(\mathrm{T}(S, a, m))=\mathrm{g}(S)+\frac{m-d}{2}$.
- $\mathrm{F}(\mathrm{T}(S, a, m))=\max \{w(i)+$ ai $\bmod m \mid i \in\{0,1, \ldots, m-1\}\}-m$. Moreover,

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~T}(S, a, m)) \geq \mathrm{F}(S)+a \mathrm{~F}(S) \bmod m . \\
& \mathrm{F}(\mathrm{~T}(S, a, m)) \leq \mathrm{F}(S)+m-d . \\
& \mathrm{F}(\mathrm{~T}(S, a, m))=\mathrm{F}(S)+m-d \text { if and only if } \mathrm{aF}(S) \bmod m=m-d .
\end{aligned}
$$

Example

$$
S=\{0,5,7,9,10,12,14, \rightarrow\}=\langle 5,7,9\rangle, \mathrm{F}(S)=13, \mathrm{~g}(S)=8
$$

- $\mathrm{T}(S, 2,10)=\langle 5,11,17,18,24\rangle, \quad \mathrm{g}(\mathrm{T}(S, 2,10))=12^{(*)}$

$$
13+2 \times 13 \bmod 10=19=\mathrm{F}(\mathrm{~T}(S, 2,10))<21=13+10-2
$$

- $\mathrm{T}(S, 6,10)=\langle 5,9,13\rangle, \quad \mathrm{g}(\mathrm{T}(S, 6,10))=12^{(*)}$

$$
13+6 \times 13 \bmod 10=21=\mathrm{F}(\mathrm{~T}(S, 6,10))=13+10-2
$$

- $\mathrm{T}(S, 8,10)=\langle 5,11,13,16\rangle, \quad \mathrm{g}(\mathrm{T}(S, 8,10))=12^{(*)}$

$$
\begin{aligned}
& 13+8 \times 13 \bmod 10=17<19=\mathrm{F}(\mathrm{~T}(\mathrm{~S}, 8,10))<21=13+10-2 \\
& { }^{(\cdot)} 8+\frac{10-2}{2}=12
\end{aligned}
$$

- Let S be a numerical semigroup, $m \in S \backslash\{0\}$, $a \in \mathbb{N}$ such that $\operatorname{gcd}(a-1, m)=1$, and $d=\operatorname{gcd}(a, m)$.
- Let $\operatorname{Ap}(S, m)=\{w(0)=0, w(1), \ldots, w(m-1)\}$.
- Let $\mathrm{R}(S, a, m)$ be a numerical semigroup.

Theorem

- $\operatorname{Ap}(\mathrm{R}(S, a, m), m)=\{w(i)-$ ai $\bmod m \mid i \in\{0,1, \ldots, m-1\}\}$.

Proposition

- $\mathrm{g}(\mathrm{R}(S, a, m))=\mathrm{g}(S)-\frac{m-d}{2}$.
- $\mathrm{F}(\mathrm{R}(S, a, m))=\max \{w(i)-$ ai $\bmod m \mid i \in\{0,1, \ldots, m-1\}\}-m$.

Moreover,
$\mathrm{F}(\mathrm{R}(S, \mathrm{a}, m)) \geq \mathrm{F}(S)-\mathrm{aF}(S) \bmod m$.
$\mathrm{F}(\mathrm{R}(S, a, m)) \leq \mathrm{F}(S)$.
$\mathrm{F}(\mathrm{R}(S, a, m))=\mathrm{F}(S)$ if and only if $\mathrm{aF}(S) \bmod m=0$.

Example

$$
S=\{0,8,12,15, \rightarrow\}=\langle 8,15,17,18,19,12,21,22\rangle, \mathrm{F}(S)=14, \mathrm{~g}(S)=12
$$

- $\mathrm{R}(S, 2,8)=\langle 8,9,12,13,14,15,19\rangle, \quad \mathrm{g}(\mathrm{R}(S, 2,8))=9=12-\frac{8-2}{2}$

$$
14-2 \times 14 \bmod 8=10<11=\mathrm{F}(\mathrm{R}(S, 2,8))<14
$$

- $\mathrm{R}(S, 4,8)=\langle 8,11,12,13,15,17,18\rangle, \quad \mathrm{g}(\mathrm{R}(S, 4,8))=10=12-\frac{8-4}{2}$

$$
14-4 \times 14 \bmod 8=14=\mathrm{F}(\mathrm{R}(S, 4,8))=14
$$

- $\mathrm{R}(S, 6,8)=\langle 8,11,12,13,14,15,17,18\rangle, \quad \mathrm{g}(\mathrm{R}(S, 4,5))=9=12-\frac{8-2}{2}$

$$
14-6 \times 14 \bmod 8=10=\mathrm{F}(\mathrm{~T}(S, 8,10))<14
$$

- Let p, q be nonnegative integers with $q \neq 0$.

Lemma

- $\mathrm{M}(p, q)=\{x \in \mathbb{N} \mid p x \bmod q \leq x\}$ is a numerical semigroup.
- Let S be a numerical semigroup, $m \in S \backslash\{0\}$, and $a \in \mathbb{N}$ such that $\operatorname{gcd}(a-1, m)=1$.

Proposition (Families of retractable numerical semigroups)

- $\mathrm{R}(S, a, m)=\mathbb{N}$ if and only if $S=\mathrm{M}(a, m)$.
- If S is a numerical semigroup with maximal embedding dimension and multiplicity m, then $\mathrm{R}(S, a, m)$ is a numerical semigroup.
- Let S be a numerical semigroup, $m \in S \backslash\{0\}$, $a \in \mathbb{N}$ such that $\operatorname{gcd}(a-1, m)=1$, and $\operatorname{gcd}(a, m)=d$.
- Let $\left\langle n_{1}, n_{2}, \ldots, n_{p}\right\rangle$ be the minimal system of generators of S.

Proposition

- $\left\langle n_{1}+a n_{1} \bmod m, n_{2}+a n_{2} \bmod m, \ldots, n_{p}+a n_{p} \bmod m\right\rangle$ is a subset of the minimal system of generators of $\mathrm{T}(S, a, m)$.
- $\mathrm{e}(S) \leq \mathrm{e}(\mathrm{T}(S, a, m))$.
- Let $\mathrm{R}(S, a, m)$ be a numerical semigroup.

Proposition

- $\left\langle n_{1}-a n_{1} \bmod m, n_{2}-a n_{2} \bmod m, \ldots, n_{p}-a n_{p} \bmod m\right\rangle$ is a system of generators of $\mathrm{R}(S, a, m)$.
- $\mathrm{e}(S) \geq \mathrm{e}(\mathrm{R}(S, a, m))$.

Example

$$
S=\langle 5,7,9\rangle
$$

- $\mathrm{T}(S, 2,10)=\langle 5,11,17,18,24\rangle$
- $\mathrm{T}(S, 6,10)=\langle 5,9,13\rangle$
- $\mathrm{T}(S, 8,10)=\langle 5,11,13,16\rangle$

$$
S=\langle 5,6,7,8,9\rangle
$$

- $\mathrm{R}(S, 2,5)=\mathrm{R}(S, 3,5)=\langle 3,4,5\rangle$
- $\mathrm{R}(S, 4,5)=\langle 2,5\rangle$

$$
S=\langle 5,11,12,13,9\rangle
$$

- $\mathrm{R}(S, 2,5)=\langle 5,6,8,9\rangle$
- $\mathrm{R}(S, 3,5)=\mathrm{R}(S, 4,5)=\langle 5,7,8,9,11\rangle$
- Let S be a numerical semigroup, $m \in S \backslash\{0\}$.

Lemma

- Let $a, u \in \mathbb{N}$ such that $\operatorname{gcd}(a+1, m)=1$ and $(1+a) u \equiv 1(\bmod m)$. Then $S=\mathrm{R}(\mathrm{T}(S, a, m), a u, m)$.

Lemma

- Let $a, u \in \mathbb{N}$ such that $\operatorname{gcd}(a-1, m)=1$ and $(1-a) u \equiv 1(\bmod m)$. Then $S=\{x+$ aux $\bmod m \mid x \in \mathrm{R}(S, a, m)\}$.
- Moreover, if $\mathrm{R}(S, a, m)$ is a numerical semigroup, then $\mathrm{T}(\mathrm{R}(S, a, m), a u, m)=S$.

Theorem

- Let S, B be two numerical semigroups, $m \in(S \cap B) \backslash\{0\}$, and $a, b \in \mathbb{N}$ such that $(1+b)(1-a) \equiv 1(\bmod m)$. Then $R(S, a, m)=B$ if and only if $S=\mathrm{T}(B, b, m)$.

Example

$$
S=\langle 5,11,12,13,9\rangle
$$

- $\mathrm{R}(S, 2,5)=\langle 5,6,8,9\rangle=B ; S=\mathrm{T}(B, 3,5)$
$(1+3)(1-2) \equiv 1(\bmod 5)$
- $\mathrm{R}(S, 3,5)=\langle 5,7,8,9,11\rangle=B ; S=\mathrm{T}(B, 1,5)$
$(1+1)(1-3) \equiv 1(\bmod 5)$
- $\mathrm{R}(S, 4,5)=\langle 5,7,8,9,11\rangle=B ; S=\mathrm{T}(B, 2,5)$
$(1+2)(1-4) \equiv 1(\bmod 5)$

References

A.M. Robles-Pérez and J.C. Rosales.

Modular translations of numerical semigroups. Semigroup Forum. DOI 10.1007/s00233-012-9372-8.
A A.M. Robles-Pérez and J.C. Rosales.
Modular retractions of numerical semigroups.
Submitted.
J.C. Rosales and P.A. García-Sánchez.
"Numerical semigroups", Developments in Mathematics, vol. 20.
Springer, New York, 2009.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

