Metric Dimension, Upper Dimension and Resolving Number of Graphs

Antonio González

University of Seville

joint work with D. Garijo and A. Márquez

VIII Jornadas de Matemática Discreta y Algorítmica

Almería, 11-13 de Julio de 2012

dim⁺(G)= maximum size of a minimal resolving set

dim⁺(G)= maximum size of a minimal resolving set

dim⁺(G)= maximum size of a minimal resolving set

dim⁺(G)= maximum size of a minimal resolving set

dim⁺(G)= maximum size of a minimal resolving set

dim⁺(G)= maximum size of a minimal resolving set

dim⁺(G)= maximum size of a minimal resolving set res(G)= minimum k such
that every k-subset is a
resolving set.

.,2,2,3 $\dim(G) \leq \dim^+(G) \leq \operatorname{res}(G)$ $\dim^+(G)$ res(G)

dim⁺(G)= maximum size of a minimal resolving set

Realizability ???

Realizability

Realizability - [Chartrand et al., 2000]

 $\begin{aligned} & \text{Realizability} \longleftarrow \text{[Chartrand et al.,2000]} \\ & \text{dim}(G) \leq \text{dim}^+(G) \leq \text{res}(G) \end{aligned}$

 $\begin{array}{l} \text{Realizability} \leftarrow \text{[Chartrand et al.,2000]} \\ \dim(G) \leq \dim^+(G) \leq \operatorname{res}(G) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$

$\begin{aligned} \text{Realizability} & \quad \text{[Chartrand et al.,2000]} \\ \dim(G) &\leq \dim^+(G) \leq \operatorname{res}(G) \end{aligned}$

 $\begin{array}{l} \text{Realizability} \leftarrow \text{[Chartrand et al.,2000]} \\ \text{dim}(G) \leq \text{dim}^+(G) \leq \text{res}(G) \\ & \parallel \\ & C \end{array}$

 $\begin{array}{l} \text{Realizability} \leftarrow \text{[Chartrand et al.,2000]} \\ \dim(G) \leq \dim^+(G) \leq \operatorname{res}(G) \\ \parallel \\ a & C \end{array}$

 $\begin{array}{l} \text{Realizability} \leftarrow \text{[Chartrand et al.,2000]} \\ \dim(G) \leq \dim^+(G) \leq \operatorname{res}(G) \\ \parallel \\ a & C \end{array}$

 $\begin{array}{l} \text{Realizability} \leftarrow [\text{Chartrand et al.,2000}] \\ \dim(G) \leq \dim^+(G) \leq \operatorname{res}(G) \\ \|a & \|b \\ \end{array}$

<u>Conjecture</u>: For every pair a, b of integers with $2 \le a \le b$, there exists a conected graph G such that dim(G)=a and dim⁺(G)=b.

 $\begin{array}{l} \text{Realizability} \leftarrow [\text{Chartrand et al.,2000}] \\ \dim(G) \leq \dim^+(G) \leq \operatorname{res}(G) \\ \|a & \|b \\ \end{array}$

<u>Theorem</u>:[Garijo,G.,Márquez] Given c>3, the set of graphs with resolving number *c* is finite.

QUESTION (2): RECONSTRUCTION!!!

Reconstruction

Reconstruction

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

Reconstruction

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

 $res \le 2$
<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

[Garijo,G.,Márquez,2011] If G is neither a tree nor a cycle, then:

- 1. $g(G) \le 2 res(G) 1$
- 2. $D(G) \le 3 \operatorname{res}(G) 5$
- 3. $n \leq 2res(G)$ whenever G has diameter 2
- 4. $\Delta(G) \leq 2 \operatorname{res}(G)$

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

$n \leq 2res(G)$ whenever G has diameter 2

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

Bichromatic

<u>Problem</u>: given c > 0, which are the graphs G such that res(G) = c?

Open problem: Reconstruction of trees.

Thanks!