Metric Dimension, Upper Dimension and Resolving Number of Graphs

Antonio González

University of Seville

joint work with D. Garijo and A. Márquez

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

Resolving Sets and Metric Dimension

$\operatorname{dim}(G)=$ size of a minimum resolving set

Resolving Sets and Metric Dimension

$\operatorname{dim}(G)=$ size of a minimum resolving set

Resolving Sets and Metric Dimension

$\operatorname{dim}(G)=$ size of a minimum resolving set

Resolving Sets and Metric Dimension

$\operatorname{dim}(G)=$ size of a minimum resolving set $\operatorname{dim}\left(K_{n}\right)=n-1$

$\operatorname{dim}\left(\mathrm{P}_{\mathrm{n}}\right)=1$

Resolving Sets and Metric Dimension

$\operatorname{dim}(G)=$ size of a minimum resolving set $\operatorname{dim}\left(K_{n}\right)=n-1$

$\operatorname{dim}\left(\mathrm{P}_{\mathrm{n}}\right)=1$

Resolving Sets and Metric Dimension

$\operatorname{dim}(G)=$ size of a minimum resolving set $\operatorname{dim}\left(K_{n}\right)=n-1$

$\operatorname{dim}\left(\mathrm{P}_{\mathrm{n}}\right)=1$

Resolving Sets and Metric Dimension

$\operatorname{dim}(G)=$ size of a minimum resolving set $\operatorname{dim}\left(K_{n}\right)=n-1$

$\operatorname{dim}\left(\mathrm{P}_{\mathrm{n}}\right)=1$

Upper Dimension and Resolving Number

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set

$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set
$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

Upper Dimension and Resolving Number

$\operatorname{dim}^{+}(G)=$ maximum size of a minimal resolving set
$\operatorname{res}(G)=$ minimum k such that every k-subset is a resolving set.

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

Realizability ???

Realizability

Realizability \longleftarrow [Chartrand et al.,2000]

Realizability «Chartrand et al,2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

Realizability «Chartrand e tal, 2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II

Realizability

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$
II

Realizability
 \longleftarrow [Chartrand et al.,2000]

 $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II

Realizability
\longleftarrow [Chartrand et al.,2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
$\operatorname{dim}\left(K_{n}\right)=\mathrm{n}-1$

Realizability
\longleftarrow [Chartrand et al.,2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$
$\operatorname{dim}\left(K_{n}\right)=\mathrm{n}-1$

Realizability
\longleftarrow [Chartrand et al.,2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
C
$\operatorname{dim}\left(K_{n}\right)=\mathrm{n}-1$

Realizability
[Chartrand et al.,2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
C
$\operatorname{dim}\left(K_{n}\right)=\mathrm{n}-1$
$\operatorname{res}\left(K_{n}\right)=\mathrm{n}-1$

Realizability \longleftarrow [Chartrand et al.,2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
C

Realizability «Chartrand e tal, 2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II

C

Realizability

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$
II
II
C

Realizability

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$
II
II
C

Realizability «Chartrand e tal, 2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II

C

Realizability «Chartrand e tal, 2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
b

Realizability
 \longleftarrow [Chartrand et al.,2000]

 $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II II

Conjecture: For every pair a, b of integers with $2 \leq a \leq b$, there exists a conected graph G such that $\operatorname{dim}(G)=a$ and $\operatorname{dim}^{+}(G)=b$.

Realizability
 \longleftarrow [Chartrand et al.,2000]

 $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II II

Theorem: For every pair a, b of integers with $2 \leq a \leq b$, there exists a conected graph G such that $\operatorname{dim}(G)=a$ and $\operatorname{dim}^{+}(G)=b$. It is true!!! [Garijo,G.,Márquez,2011]

Realizability «Chartrand e tal, 2000] $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
b

Realizability

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$
II
b

Realizability

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

Realizability «Chartrand e t l 1,2000$]$

 $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

Realizability

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

Realizability «Chartrand e t l 1,2000$]$

 $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II
Realizability «Chartrand e t l 1,2000$]$

 $\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$ II
Realizability «Chartrand e t l 1,2000$]$

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

Realizability «Chartrand e t l 1,2000$]$

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

How many???

Realizability «Chartrand et al, 2000]

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
b
II

How many???

Realizability

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$
 II
 b
 II
 C

Theorem:[Garijo,G.,Márquez] Given c>3, the set of graphs with resolving number c is finite. пOVv Illaliy!! !

Realizability [Chartrand et al.,2000]

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
b
II
C

Theorem:[Garijo,G.,Márquez] Given $c>3$, the set of graphs with resolving number c is finite. пUVv Illainy!!!

QUESTION (1): Realization of triples (a, b, c).

Realizability «Chartrand et al, 2000]

$\operatorname{dim}(G) \leq \operatorname{dim}^{+}(G) \leq \operatorname{res}(G)$

II
II
II
C

Theorem:[Garijo,G.,Márquez] Given c>3, the set of graphs with resolving number c is finite. пUVV Illally! !

QUESTION (1): Realization of triples (a, b, c).

QUESTION (2): RECONSTRUCTION!!!

QUESTION (2): RECONSTRUCTION!!!

Reconstruction

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2
[Chartrand,Zhang,2000] Paths and odd cycles.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2
[Chartrand,Zhang,2000] Paths and odd cycles.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2
[Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.

$$
\text { res }=3
$$

[Garijo,G.,Márquez,2011] If G is neither a tree nor a cycle, then:

1. $\mathrm{g}(G) \leq 2 \operatorname{res}(G)-1$
2. $D(G) \leq 3 \operatorname{res}(G)-5$
3. $n \leq 2 \operatorname{res}(G) \quad$ whenever G has diameter 2
4. $\Delta(G) \leq 2 \operatorname{res}(G)$

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$
$\mathrm{n} \leq 2 \operatorname{res}(G) \quad$ whenever G has diameter 2

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$
$n \leq 2 \operatorname{res}(G)$
whenever G has diameter 2

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$

$n \leq 2 \operatorname{res}(G) \quad$ whenever G has diameter 2

[Goodman,1959] Any 2-edge-coloring of K_{n} contains at least $2\binom{\frac{n}{2}-2}{3}$ monochromatic triangles.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$

$n \leq 2 \operatorname{res}(G) \quad$ whenever G has diameter 2

[Goodman,1959] Any 2-edge-coloring of K_{n} contains at least $2\binom{\left[\frac{n}{2}-2\right.}{3}$ monochromatic triangles.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$

$n \leq 2 \operatorname{res}(G) \quad$ whenever G has diameter 2

[Goodman,1959] Any 2-edge-coloring of K_{n} contains at least $2\binom{\left[\frac{n}{2}-2\right.}{3}$ monochromatic triangles.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$

$n \leq 2 \operatorname{res}(G) \quad$ whenever G has diameter 2

[Goodman,1959] Any 2-edge-coloring of K_{n} contains at least $2\binom{\frac{n}{2}-2}{3}$ monochromatic triangles.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$

$n \leq 2 \operatorname{res}(G) \quad$ whenever G has diameter 2

[Goodman,1959] Any 2-edge-coloring of K_{n} contains at least $2\binom{\frac{n}{2}-2}{3}$ monochromatic triangles.

$\frac{n}{2} \longleftrightarrow \operatorname{res}(G) \geq \frac{n}{2}$

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2
[Chartrand,Zhang,2000] Paths and odd cycles.
res $=3$

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2
[Chartrand,Zhang,2000] Paths and odd cycles.
res = 3 [Garijo,G.,Márquez,2011] Even cycles plus other 18 graphs.

Reconstruction

Problem: given $c>0$, which are the graphs G such that

 $\operatorname{res}(G)=c$?
res ≤ 2

[Chartrand,Zhang,2000] Paths and odd cycles.

$$
\text { res }=3
$$

[Garijo,G.,Márquez,2011] Even cycles plus other 18 graphs.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2
[Chartrand,Zhang,2000] Paths and odd cycles.
res = 3 [Garijo,G.,Márquez,2011] Even cycles plus other 18 graphs.

Reconstruction

Problem: given $c>0$, which are the graphs G such that $\operatorname{res}(G)=c$?
res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.
res = 3 [Garijo,G.,Márquez,2011] Even cycles plus other 18 graphs.

Open problem: Reconstruction of trees.

Thanks!

