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1 INTRODUCTION

That the Brauer group of a cocommutative coalgebra need not be equal to the
Brauer group of the dual algebra is a good thing because it provides a certain
richness to the theory. On the other hand, the relation between the coalgebraic
theory and the Brauer group of a local ring is one of the main motivations to
further the study in the coalgebra case.

Since a cocommutative coalgebra may be viewed as the direct sum of i-
rreducible coalgebras its Brauer group reduces to a product of Brauer groups
of irreducible cocommutative coalgebras. Hence it is enough to restrict our
attention to the irreducible case. In this paper, for a cocartesian diagram of



cocommutative irreducible coalgebras,

e fi o,
f2 g1
o, e

we construct a Mayer-Vietoris exact sequence (Theorem 4.3)

Br(C') —— Br(C,) & Br(Cy) — Br(C).

0

If we compare to the Mayer-Vietoris sequence in ring theory (see [1]), there
is an interesting simplification presented in the coalgebra theory due to the
fact (Proposition 4.1) that the Picard group of a cocommutative coalgebra
vanishes. The sequence is derived from a dual version of the classical Milnor’s
theorem (Theorem 3.6). This relates the category of finitely cogenerated injec-
tive comodules over the coalgebras appearing in the cocartesian diagram. More
concretely, the category of finitely cogenerated C-comodules (') is equivalent
to the fibre product category 1(C}) X 1@ I(C3). Similar theorems are deduced
for the category of finitely cogenerated injective cogenerators (Corollary 3.9)
and Azumaya coalgebras (Corollary 3.11).

As application of the Mayer-Vietoris sequence, for a cocommutative irre-
ducible coalgebra C' over a field k, its universal connected coalgebra R(C')
can be viewed in a cocartesian diagram involving (', its coradical Cp, and the
ground field (Example 4.4). An exact sequence relating the Brauer group of
the above coalgebras is derived (Corollary 4.5). When the ground field is finite,
then Br(C) = Br(R(C)).

2 NOTATION AND PRELIMINARIES

Throughout k is a fixed field. All algebras, coalgebras, vector spaces and
unadorned @ are over k. We use the usual sigma notation for coalgebras and
comodules. M denotes the category of right C-comodules and for right C-
comodules XY, Com_c(X,Y) denotes the vector space of all C-colinear maps
from X to Y.



Let U : MY — M} be the forgetful functor. U has a right adjoint functor
—®C. For a comodule X, with structure map px, and a vector space V', the
adjoint isomorphism

O:Com_c(X,VaC)— Homg(X,V) (1)

is given by ®(F') = (1®@¢)F. The inverse ®~! is given by &' (f) = (f @ 1)px.
In particular, if V =k, then

Com_c(X,C) = X~

Let a : €' — D be a coalgebra map. Every right C'-comodule X may be
viewed as a right D-comodule with the structure map:

Il@apx: X =>X0C—=>XeD.

In this case, we will say Xp is induced by X¢ via a. A (C'— D)-bicomodule
is a left C-comodule and a right D-comodule X, denoted by «Xp, such that
the C'-comodule structure map px : X — X ® C is D-colinear.

Cotensor product : Let M be a right C-comodule and N a left C'-comodule
with structure maps pys and py respectively. The cotensor product MOs N
is the kernel of the map

py @1 —1Rpy  M@N —- M ®@C® N.

The functors MOgs— and —O¢ N are left exact and preserve direct sums.
If ¢ Mp and p Ng are bicomodules, then MOg N is a (C' — E)-bicomodule with
comodule structures induced by those of M and N.

Let X € MY, we say that X is finitely cogenerated if it is isomorphic to
a subcomodule of C™ for some n > 1, where C"™ denotes the direct sum of
C' n times. X is free if X is isomorphic to C'Y) for some set I. X is said to
be a cogenerator if for any comodule M € M¢, M — XU, for some set I, as
comodules. X is injective if the functor Com_¢(—, X) is exact, or equivalently,
the functor XOg— is exact.

Co-hom functor: A right C-comodule X is quasi-finite if Com_c (Y, X) is
finite dimensional for any finite dimensional comodule Y € M%. Now, we
recall from [2] the definition of the co-hom functor:



LEMMA 2.1 Let ¢ Xp be a bicomodule. Then Xp is quasi-finite if and only
if the functor —0cX : MY — MP has a left adjoint functor, denoted by
h_p(X,—=). That is, for comodules Yp and Z¢,

Com_c(h_D(X, Y),Z) = Com_D(Y,ZDcX) (2)

where,
hop(X,Y) =lim_,, Com_p(Y,, X)"

is a right C-comodule and {Y,} is a directed family of finite dimensional sub-
comodules of Yp such that Yp = U,Y,. We denote by 0 the canonical D-
colinear map Y — h_p(X,Y)OcX which corresponds to the identity map
h-p(X,Y) = h_p(X,Y) in (2).

If we assume that Xp is a quasi-finite comodule, then e_p(X) = h_p(X, X)
is a coalgebra, called the co-endomorphism coalgebra of X. The comultiplica-
tion of e_p(X) corresponds to (1 @ 6)0 : X — e_p(X) ®e_p(X)® X in (2)
when C' = k and the counit of e_p(X) corresponds to the identity map 1y.

Let ¢ Xp be a bicomodule such that Xp is quasi-finite. Then there exists a
coalgebra map A : e_p(X) — C such that the left C'-comodule structure map
equals (A @ 1)0. Conversely, a coalgebra map A : e_p(X) — € makes X into
a (C'— D)-bicomodule.

In this paragraph we recall the notion of Azumaya coalgebra, the Brauer
group of a cocommutative coalgebra and some of its properties. We refer the
reader to [3] for the construction of the Brauer group and to [4] for the relative
Brauer group and its cohomological interpretation.

Brauer group: A coalgebra map f: D — FE is said to be cocentral if

2o flen) @ea =3 flez) @ e

For a coalgebra D, there exists a cocommutative coalgebra Z(D) with a sur-
jective, cocentral coalgebra map 1¢: D — Z(D) which satisfies the universal
property: for any cocentral coalgebra map f: D — F there is a unique coal-
gebra map ¢ : Z(D) — E such that f = g1?. (Z(D),1%) is called the cocenter
of D. In fact, Z(D) = h_pe(D, D) = e_pe(D) where D = D @ D".

Let C be cocommutative coalgebra. A C-coalgebra D is a k-coalgebra with
a cocentral coalgebra map ep : D — (', called the C-counit. A k-coalgebra
map f : D — E is a C-coalgebra map if egf = ep. A C-coalgebra D is



said to be cocentral if Z(D) = C and D is said to be C-coseparable if there
is a D-bicomodule map 7 : DOxD — D such that 7A = 1p. An Azumaya
(C'-coalgebra is defined to be a C-cocentral and C-coseparable coalgebra. If P
is an injective quasi-finite cogenerator then e_¢(P) is an Azumaya coalgebra.
Denote by B(C') the set of the isomorphism classes of Azumaya C-coalgebras.
An equivalence relation (indeed a Morita-Takeuchi equivalence relation) is in-
troduced in B(C) as follows: if F,F € B(C), then E is equivalent to F,

denoted by F ~ F| if there exist two quasi-finite injective cogenerators M, N
in MY such that

Emce_c(M) = F‘jce_c(N).

The quotient set B(C)/ ~, denoted by Br(C), is an abelian group with
the multiplication [E][F] = [FO¢ F], unit element [C] and for [E] the inverse
is [F°]. The group Br(C') is called the Brauer group of the cocommutative
coalgebra C.

Let n: D — C a map of cocommutative coalgebras, then 1 induces a group
homomorphism n. : Br(C') — Br(D) given by n.([F]) = [EQ¢ D] for all [E] €
Br(C). If C is of finite dimension, the Brauer group of C' is isomorphic to the
Brauer group of the commutative algebra C*. Since C' is cocommutative, C' can
be expressed as C' = B;c7C; where each C; is an irreducible subcoalgebra and
we have that Br(C') = [T;e; Br(C;). This decomposition has two consequences:

1) In general Br(C') is not torsion. Let @ be the rational number field and C
the group like coalgebra C' = @, cn@. It is well-known that for any n € IV
there is [A,] € Br(@) of order n. The coalgebra A = &, n AL is C-Azumaya,
cf. [3, Ex. 4.7], and [A] does not have finite order in Br(C).
2) To compute the Brauer group of a cocommutative coalgebra it is enough to
compute the Brauer group of irreducible coalgebras.

If C' is irreducible, then the map (=)*: Br(C) — Br(C*),[D] — [D*] is a
group homomorphism. If in addition C is coreflexive then Br(C') = Br(C*) =
Br(Cy) where (g is the coradical of C and Br(Cy) is isomorphic to the classical

Brauer group of some finite field extension.

3  MILNOR’S THEOREM

Let C' be a cocommutative coalgebra. We consider the following categories of
(C-comodules which are equipped with a product:



(1) I(C), the category of finitely cogenerated injective left C-comodules
and C-colinear maps with product the direct sum. Then P € I(C) if and only
if Pis a direct summand of C'™ for some n > 1.

(2) C'I(C), the finitely cogenerated injective cogenerators C'-comodules and
C-isomorphisms, with product the cotensor product O¢. Then M € CI(C) if
and only if C'is a direct summand of P and P is a direct summand of C'")
for some m,n > 1.

(3) Az(C), the Azumaya C-coalgebras and C-coalgebra maps with pro-
duct Og. We recall that a C-coalgebra A is Azumaya if A is C-coseparable
and C-cocentral. If P € CI(C) then e_¢(P) € Az(C), cf. [3, Cor. 4.2].

Let f:C — D be a map of cocommutative coalgebras. If P(C') is any of
these three categories, then the functor F(—) = —0pC : P(D) — P(C) is a
product preserving functor.

If we suppose that (' is an irreducible cocommutative coalgebra, then quasi-
finite injective comodules are finitely cogenerated injective comodules.

PROPOSITION 3.1 Let C' be an irreducible cocommutative coalgebra and P an
injective right C'-comodule. Then, P is finitely cogenerated if and only if P is
quasi-finite.

Proof. If P is finitely cogenerated then P — O for some n > 1. Let F be a
finite dimensional C'-comodule, we have from (1)

Com_c(F, P) = Com_c(F, C(”)) &~ Hom(F,k(”)). o~ ()

Hence P is quasi-finite. This implication is always true, we do not need the
injectivity of P and irreducibility of the coalgebra.

Conversely, we suppose that P is quasi-finite. As P is injective and C' is
irreducible it follows that P is free, cf. [5, A.2.2]. But a comodule that is

quasi-finite and free has to be finitely cogenerated. I

DEFINITION 3.2 A diagram of cocommutative coalgebras

e S o,

Ja 5N (3)
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Ch18C,

is a cocartesian diagram if C = Tnth—h)

or equivalently, the following se-
quence 18 exact:

_ - S,
o fi—fe Oy Oy g1 © g2 C 0.

Any C-comodule may be viewed as a (;~comodule and every C;-comodule
is a C-comodule, i = 1,2. For P € [(C) we apply the functor POc— to (3).
So, we have:

fi

PO.C PO~CY
fz a1
POCy, 2 pOC

where f; = 10f;,g; = 10¢; for i = 1,2. If P; denotes PO (), then P; € 1(Cy)

and we have an isomorphism of C-comodules

P:0q.C = POcC;04,C = POC.
We put P; = PZ'Dci?, i =1,2. Then, P, = POcC = P,. Let ¢ : P, = P, be

this isomorphism of C-comodules. If we consider the P; as C-comodules then

Im(fi — forb) is a C-subcomodule of P; @& P, and P is isomorphic to

P& Py
Im(fi — fo)
Now, we consider the converse problem, i.e, given P; € I(C;) ©« = 1,2 such
that ¢ : P1D016 = P2D026 is an isomorphism of C-comodules, is there a
C-comodule P € [(C) such that POcC; = P; for i = 1,27 If we impose that
either f; or fy in (3) is injective, then the above question has a positive answer.

Let P, € I(C;) 1 = 1,2 such that ¢ : P1D016 — P2D026 is an isomorphism
of C-comodules. Let ¢ denote the counit of the coalgebras appearing in (3),
E=1®ecand f : PZ'Dci? — P;0¢,C; to be the map 10f;, then ¢ = £f; for
i = 1,2. Moreover, if we identify P,0¢,C; and Py 1 = 1,2 via &, Im(f — f0) =
Im(g — &v). We define

PP

P = )



P is C-comodule. In fact, P is nothing else but the pushout of

_ v . &

POq C PO, C P,

Py
From now on, we denote P;0q,C by P; i = 1,2 and P by (P, Py,¢0). We
construct the fibred product category C = I(C}) X 1@ I(Cy):

0bj(C): C-comodules of the form (P, P2,¢) with P € I(C;) « = 1,2 and

) : P, — P, an isomorphism of C-comodules.

Hom(C): Given (Py, Py, ), (Q1,Q2,¢) € C a morphism f : (P, P»,v¢) —
(Q1,Q2,¢) is a pair of C;-comodule maps f; : P, — Q; i = 1,2 making the
following diagram commutative:

=
el

Q1 Q>
With these conventions, we have the following facts:
1) C = (Cy,Cq, 15), where 15 denotes the identity map in C.
2) fis an isomorphism if and only if f; is an isomomorphism for ¢ = 1, 2.

3) (P, Py, ) @ (Q1, Q2. 0) & (PL & Q1, P, ® Q2,0 @ ).

Next we define elementary maps for coalgebras. Let C' be a coalgebra.
If f:00" = 0" isa C-colinear map then f induces n? C-colinear maps
fij: C —=Cftori,y=1,...,n defined by the composition:

[

l; Ty

C () () C,

where [; is the injection at position i and 7; is the projection at position j

for 1,7 = 1,...,n. So, f can be represented as a matrix of C-colinear maps
f = (fij)i; Let End_c(C™) denote the space of right C-colinear maps from



O to C™. We define a product in End_q(C™) as follows: Let f,g €
End_c(C™) be represented as matrices [ = (fi;)ij,g = (gi)i;, we define
h = gf to be h = (hij)i,j where hij = 22:1 gikfkj- USng (1), End_c(C(”))
with this product is isomorphic to the matrix algebra M,(C*). The space
Aut_o(CM) of all bijective C-colinear maps from C™ to C'* is a subgroup
of End_q(C™) with respect to the above product. We write 15 for the identity
map of C.

DEFINITION 3.3 An elementary map in Aut_o(C™) is a C-colinear map ob-
tained from the identity map (fi = lo, fi; = 0 ¢f © # j) replacing some
off-diagonal zero entry by some C-colinear map f,, : C — C'.

Let E,(C) be the subgroup of Aut_o(C™) generated by all elementary
maps. There is a canonical embedding of Aut_c(C™) in Aut_o(C"+V) given

by
o a 0
o 0 1o )

For ¢ € Aut_o(C) we obtain the following identity:

(3L)-

logy o7t Loy 0 Lo 7' —lom Lo 0
U ) Loy lom 0 Ilow - lowm |7

Since the maps on the right hand side are elementary, it follows that ) =1 €
Ey(C™).

We denote C;04C by C;, then we have C; = C;0,C = C for i = 1,2. We
identify C7,C, and C.

LEMMA 3.4 Let ¥,¢" € Aut_o(C™)) such that ' = yipiby for some ¥; €
Aut_ci(Ci(”)) where ; = ;01 fori =1,2. Then there is an isomorphism of
C'-comodules

(Cl(”), Cg(”),;/)) o~ (Cl(”), Cg(”),;//)

Proof. The isomorphism is the map induced by ¢; & ™! : 1M @ ¢, —

1" @ ¢, This map is an isomorphism since ¥, ¥, are so. 1



LEMMA 3.5 We assume that in the cocartesian diagram (3) either fi or fy is
injective. Then,

i) For all ) € E,(C), (0™, Col" )= O,
it) For all » € Aut_o(C™) we have

((jl(n)7 Cg(”), W) B ((jl(?%)7 Cg(”), ¢—1) o~ (1(2n)

Hence, (Cl(”),CQ(”),;/)) is a finitely cogenerated injective C'-comodule, that is,
(O, 0 ) € 1(0).

Proof. i) We may suppose that f; : C — () is injective, then f;": 1" —
C” is surjective. Hence, if ® is the map defined in (1), the composition

® LY . 9!

Com_c,(Cy,Ch) Cr” C Com_z(C,O)

is surjective. Put h = @' f,"®; f is defined by (h(I7),c) = X (e, I fi(e1))ea
for all F € Com_¢,(Cy,Cy),ce€ C.

Let ¢ = (¢;):,; be an elementary map in Aut_g(a(n)) with distinguished
entry ¢, u # v. Since h is surjective, there is ¢, € Com_¢,(C1,C1) such
that h(guw) = duw- Let g = (gij)i; € Aut_cl(Cl(”)) defined by ¢;; = l¢,, guy at
position (u,v) and the rest zero. Then, we have:

<f1¢uv7 C> = <f1h(guv)7 C>
= Z(c)<€7guvf1(cl)>f1(62)
= Z(gw(fl(c)))<€7guv(fl(c))1>guv(f1(c))2
= guv(fl(c)) = <guvflvc>

where we have used the fact that ¢,, is a Cj-comodule map. Using this equality,
we obtain that ¢ =@ L= Tcin) and from the preceding lemma,

<d“0@wﬁg¢wﬁéﬂgwwgcw-

i) We have (C1", 37, 6) & (1", C37,67) = (O, G376 @ 67). B
the identity precedmg Lemma 3.4, ¢ @ ol e b, (6 ) and from ¢) we have,

(CF, 0 g m o) = OO,
Therefore (Cl(n), 02(71)7 @) is a finitely cogenerated injective C-comodule. 1



THEOREM 3.6 Suppose that in the cocartesian diagram (3), either fi or fy is
injective. Let P, € 1(C;) i = 1,2 and let ¢ : P, = P, be a C-isomorphism
where P; = P,OcC. Then the C-comodule

P& Py

P, P = —
(1, P2, ) Im(z — 29)
belongs to 1(C). Moreover,

(Pr, P, ¢)0cC; =2 B 1=1,2.
Finally, let Q; € I(C;) 1 = 1,2 and let ¢' : Q; = Q3 be a C-isomorphism.
Then (P, P2, &) = (Q1, Qz,qb’) as C'- comodules if and only if ¢' = qglqbggz_l for

some isomorphisms ¢ : = Q) and ¢q : = Q,.

Proof. Let P; € I(C;), then there is Q; € I(C;) such that F; & @Q; = CZ»(n) for
i =1,2. ¢: P, = P, induces an isomorphism of C-comodules 1 given by the
composition:

c{%@ﬁ%@@z@@l PoGiad: 20" aQ.

We have (Py, Py, ¢) & (C & Q1, C" & Qy,0) = (CPV, 08, ¢ & ) and
(Cl(%), 02(271), ody) e I(C ) by the foregomg lemma. Hence, (P, P2, ¢) € 1(C).
For the second claim, first we see that for all ¢ € Aut_g(a(n)) we have:
(1, %, 9)BeCiz O i=1,2,

Let [ = Im(g — £¢) and we suppose 1 = 1. We define,

I ( 2 7¢)DOC1 — C{n) Si@idyi+ Qe — 3 xe(e),
g: (C Cz Lom)0cC) — O T (@iByi DO e T, ().
From the preceding lemma (Cl(n), CQ(n), ?) B ( 2 ,qb 1) 22 0@ then,
(e, e ppecilal(c, iV, ¢BeCy] = Cf
/ g fdyg

12



and f @ ¢ is an isomorphism. Hence f and ¢ are isomorphisms. Now, we
consider the identity,

(P, Py, 8) @ (C @ Qu, O @ Qav0) = (2,08 6 @ 1b).

Cotensoring this identity with —OsC};, defining maps similar to the above and
then using the foregoing fact we obtain that (P, Py, ¢)0cCy = P.

Finally, let P = (P, Py, ¢) and Q = (Q1, @2, ¢’) and p : P = () an isomor-
phism of C-comodules. Let
o;: POcC; = P 7 Q00 = Q) 1 =1,2,

be the isomorphisms of C;-comodules. We consider the following commutative
diagram:

0'1_1‘:‘1 _ leDl T1D1

Py (POcCy)0¢, C (QOcCy)8¢, C

Q1

¢ ¢/

o101 _ pO10O1 _ 701
(PDCCQ)DC2C (QDCCQ)DC2C

Q2

Py
We define
= Tl(pljl)dl_l P — O V= Tz(le)ag_l Py — Q.
Then p, v are isomorphisms such that ¢'u = ve. 1
COROLLARY 3.7 I(C) and I(C}) X 1@ I(C3) are equivalent categories.

THEOREM 3.8 Assumptions are as in the above theorem. If P, € CI1(C;) 1 =
1,2 and ¢ : P, = P, is an isomorphism of C-comodules, then (Pi, Py, ¢) €
CI(C). Moreover, if Q; € I(C;) 1= 1,2 and ¢' : Q1 = Q4 is a C-isomorphism,
then

(P17 P27 qb)DC(le Q?v Qb/) = (P1D01 le P2D02Q27 quQb/)-

Proof. If P, € CI(C;) then there are Q);, M; € P(C;) such that P, & @Q); = CZ»(n)
and C; ¢ N; = Pi(m) for some m,n > 1,i = 1,2. We have Q; = @, and if ¢/



denotes this isomorphism, (Ql, Q2,¢") € I(C) by the preceding theorem, and
(P, P, 0) @ (Q1,Q2,¢) = . Moreover, we have

"> p™ > a2 Cal

R~ pm >~ TEM, @ Callh
Hence M; & M,. If » denotes this isomorphism, then (M, My, 1) € I(C) by

the above theorem and

(01702716)@(M17M27¢) (Cl@MhCQ@M?v O@¢) (P17P27¢)

Thus C' = (C4, Cq, 15) is a direct summand of (Py, Py, )™ so that (P, Py, ¢)
€ CI(C). For the second claim, first we prove that if ¢, L/J E Aulz(C) then

(€, 5™, @)0c(C1™, 05, ) = (186, OF, €506, 0™, gDw).

In order to prove this, we cotensor the equalities below with each other
(Cl(n)7 Cz(n), b) @ (Cl(n)7 02(71)7 qb_l) ~ O(?n)7
(Cl(m), Cz(m), b) @ (Cl(m), Cz(m), qb_l) ~ O(?m)7

and define maps as in the proof of the above theorem. Since the claim is true
for triples of this form, it is also true for direct summand of such triples by an
argument similar to the one given before. 1

COROLLARY 3.9 CI(C) and CI(Ch) Xoi@ C[(Cg) are equivalent categories.

The foregoing result is also true for the category Az(C') when all coalgebras
are irreducible. This condition is not restrictive since the computation of the
Brauer group of a coalgebra only requires the computation of the Brauer group
of its irreducible subcoalgebras, cf. [3, Th. 4.9]. If D; are C;-coalgebras ¢ = 1,2
such that ¢ : D1D01€ = D2D026 is an isomorphism of C-coalgebras, it is
routine to check that (Dy, D, @) is a C-coalgebra.

LEMMA 3.10 Suppose that in the cocartesian diagram (3) coalgebras are irre-
ducible and either fi or fy is injective. If P = (P, P2, ¢) € 1(Ch) X 1@ (Cz)

then e o(P) = (c_o, (Py), e, (P2),9).
Moreover, e_z(P,0¢,C) = e_c,(P;)0¢,C fori=1,2.



Proof. From [6, Prop. 3.1] we know that for a finitely cogenerated free C-
comodule Q = C™ e_(Q) = M°(C,n) the n x n comatrix coalgebra over C,
ie, C ®k:. Since P; € I(C;) i = 1,2, and the coalgebras are irreducible we
have P, = Cl(”), Py (0, As P & P, ﬁ(”) o U(m) and then n = m. Thus,
we may suppose that ¢ = l=(m. Hence P = C'™ and

e—C(P) =0® k;; = (01702716) ® k;;
= (C1@k;, Oy @ky, 1om) = (e (Pr), eocy (P2), 1z )

)
Finally,

e_z(P0c,C) =2C ok, =(C:0,C)0k;
= (CZ & k;)Dcla = e_ci(Pi)Dcia 1= 1,2. |

We recall from [3, Prop. 3.2] the following characterization of coseparable
coalgebras. Let D be a C-coalgebra and let D° be the C-enveloping coalgebra
DO¢x D then D is C-coseparable if and only if D is injective as a right D°-
comodule.

COROLLARY 3.11 With the same hypotheses as in the foregoing lemma, the
categories Az(C) and Az(Ch) X 4(@) Az(Cy) are equivalent.

Proof. Let D = (D1, Dy, ¢) € Az(Ch) X 4:(T) Az(Cy), then D is a C-coalgebra.
We have to check that D € Az(C'). We have the following cocartesian diagram:

D =DO-C S DoOcCy =Dy

fa g1

D2 — DDCCQ

Dy0¢,C = D, D,0¢,C =D,

Also, we have a similar square for the opposite coalgebras. Hence we obtain
the following cocartesian diagram for the enveloping coalgebras.

D — DO Do fOAT
= c

Dy0O¢, D" = Dy*
f067

Dy = Dy8¢, Dy D,0=D,"" =Dy




Since either f; or f; is injective and the cotensor product is left exact either
AOA7 or 067 is injective. On the other hand, D; is always quasi-finite
as a Df-comodule. Since (; is irreducible and D; is a Cj-Azumaya coalgebra
it follows that D¢ is irreducible, cf [3, Prop. 4.10]. Since D; is C;-coseparable,
then D; is injective as a Df-comodule ¢ = 1,2. Hence, D; is a finitely co-
generated injective Df-comodule ¢+ = 1,2. From Theorem 3.6 applied to the
square above we obtain that D = (Dy, D2, ¢) is finitely cogenerated injective
as a D°-comodule, therefore D is C-coseparable. To see that D is cocentral we

use the foregoing lemma, Z(D) = e_pe(D) = (e_p,=(D1),e_p,-(Dz),d) and
since D; is C-Azumaya it follow that Z(D;) = e_p,e(D;) = C; i = 1,2. So,
Z(D) = C and D is cocentral. Consequently, D is C-Azumaya.

Conversely, if D is C-Azumaya we always have D = (Dy, Dy, ¢) where
D; = D0OsC;1=1,2 and ¢ is the canonical isomorphism D1D01€ = D2D026.
|

4 A MAYER-VIETORIS TYPE EXACT SEQUENCE

We recall the definition of the Picard group of a cocommutative coalgebra C,
cf.[3, page 558], [7]. The Picard group of C, denoted by Pic(C), is defined as
the group of all isomorphism classes of invertible C'-comodules, where M is an
invertible C-comodule if there exists a C'-comodule N such that MO-N =
as C- comodules. Multiplication is induced by cotensor product, i.e, [M][N] =
[MOgN]. The class [C] is the identity element, and the inverse is given by
[M]™' = [M~Y], with M~ = h_¢(M, ).

PROPOSITION 4.1 Let C be a cocommutative coalgebra, then Pic(C) is trivial.

Proof. 1If P is an invertible C-comodule, then P defines an equivalence from
MY to itself. From [2, Th. 3.5] we obtain that P is a quasi-finite injec-
tive cogenerator. When ' is irreducible, from Proposition 3.1 we retain that
quasi-finite injective implies finitely cogenerated injective, hence P is finitely
cogenerated injective and invertible, so P is isomorphic to C'. If C is cocom-
mutative then C' = @,¢;C; with C; irreducible for all ¢ € I. Every C'-comodule
P is isomorphic to @;erP; with P, = POcC; and P is invertible if and only
if P; is invertible as (;-comodule. Since C; is irreducible then P, = C; and

P=E®iciP=2de,C=C. 1



PROPOSITION 4.2 Let C' be a cocommutative coalgebra, P,QQ € CI(C) and
a:e_c(P)— e_c(Q) an isomorphism of C-coalgebras. Then « is induced by
an isomorphism of C-comodules f: P — Q).

Proof. Put D = e_¢(P), then @ is a left D-comodule with structure map,

a®1

0
Q —ec(Q)OQ D®Q.
If P* denotes h_c(P,C), from [2, Th. 3.5] we have ) = PO (P*0OpQ)) as left
D-comodules. Let [ = P*OpQ and Q* = h_¢(Q,C) then I € Pic(C') since,

(Q*OpP)0c(P*OpQ) = Q*Up(POcP*)0pQ
~ 00, D0,Q = Q*0pQ = C.

Since Pic(C) is trivial, I = ' and we have an isomorphism of left D-comodules

f:Q — P, ie., the diagram

Q ! P
(a@1)0 )
1@ f
D®Q DoP

is commutative. So, ( !

with structure map (
induced by this map. |1

L@ fAH0 1) f =(a®1)f. Hence @ is a D-comodule
1® f~H(0 @ 1)f and from [2, 1.18] it follows that « is
THEOREM 4.3 Suppose that in the cocartesian diagram (3) all coalgebras are

irreducible and either f1 or fy is injective. If we consider the induced maps on
the Brauer group level, the following sequence is exvact:

0 Br(C) —— Br(Cy) ® Br(Cy) —— Br(C).

Proof. Let f,g denote the group homomorphisms f : Br(C) — Br(Cy) &

Br(Cs),g: Br(Cy) & Br(Cy) — Br(C). Explicitely, this maps are given by:

J(ID]) = (g1, 92:)([D]) = ([DDcC1], [DOc ),

g(([D1], [Da])) = (frs, f2)([DA], [Dz]s = [D18¢, 010z D,8¢, C]77,



for all [D] € Br(C), ([D1],[D2]) € Br(Cy) & Br(Cy). First we prove that
f is injective. By Corollary 3.11, if D = (Dy, D2,¢) € Az(C) is such that
[D] € Ker(f), then [DOcC;] = [ ;] = [Ci] in Br(C;) for « = 1,2. Hence
there is a P, € CI(C;) such that D; 2 e_¢,(FP;) + = 1,2. Using Lemma 3.10 we

obtain,

e—a(PIDCH?) = C- Ol(Pl)DOIC DlDOlc o
=~ D,00,C = e_¢,(P2)0¢,C = e_g(P,0¢,0).

Let ¢ : e_z(Pi0¢,C) = e_g(P0¢,C) denote this isomorphism. By the fore-
going proposition, ¢ is induced by a C-isomorphism + : P,0¢,C — P,0¢,C.
Therefore,

D= (DlvD?vqb) = (e—cl(Pl)ve—Cz(PQ)vqb/) = 6—0((P17P27¢))'

By Theorem 3.8, (P, P2,v) € CI(C). So [D] = [C] in Br(C).

Next, we check the exactness of the sequence. It is clear that Im(f) C
Ker(g). Let ([E1], [Es]) € Br(Cy) @& Br(Cy) be such that ([E1], [Es]) € Ker(g),
i.e., [F10¢,C] = [E;0¢,C] in Br(C). Then, there are P,Q € CI(C) such that

(£10¢,C)Bze_z(P) = (E,00,C)0g¢_5(P).

c
Since C is irreducible we may suppose P =2 U(”), Q = "™ and in view of
Lemma 3.10 the above equality transforms to:

E\Oc, M°(C,n) = E,00, M(C,m).
Put P, = Cl(n) and P, = Cz(m), then

(Elmcle—cl(Pl))Dclc = (EIDCHMC(_Clvn))DClC

= El‘:‘clMC(C,n)

= E2D02 (a,m)
= (200, M5(Cy,m))0c, C
(E2D02€—C2(P2))D020'
Let ¢ be this isomorphism and F = (E1O¢,e_¢, (P1), E2Oc¢,e_c, (P),¢). By
Corollary 3.11, £ € Az(C) and [EOcC;| = [EQ¢e_c,(P)] = [Ei] 1 = 1,2.
Therefore ([E1], [Eq]) € Im(f). 1
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EXAMPLE 4.4 Let ' be a cocommutative irreducible coalgebra, and Cj its
coradical. The universal connected coalgebra associated to | is defined as
R(C) = C/CF where Cf = Cy N Kere. We are going to relate Br(C') and
Br(R(C)) via the Mayer-Vietoris sequence. Let i : 'y — C the inclusion map,
I'=1Im(i,—¢)and D =C @ k/I. We define g : k — D, A — (0,A) + I, and
p:C =D, e (¢,0)+ 1 for all A € k, ¢ € C. The commutative diagram

Cy —— e
(2 q
c_ " .p

is cocartesian. Since ¢ is surjective, any element in D can be taken of the form
(¢,0) 4+ I for ¢ € C. It is trivial to prove that ¢ is injective, p is surjective and
the map D — R(C), (¢,0) + I — ¢+ C§ for any ¢ € C is an isomorphism of
coalgebras.

As a consequence of Theorem 4.3 we obtain,

COROLLARY 4.5 Let C' be a cocommutative irreducible coalgebra. There is an
exact sequence:

0

Br(R(C)) —— Br(k) & Br(C) —— Br(Cy).

Taking into account that the Brauer group of a finite field is trivial, we
obtain:

COROLLARY 4.6 If C' is a cocommutative irreducible coalgebra over a finite
field k, then Br(C) = Br(R(C)).
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