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Abstract

Sugeno and Choquet integrals have been widely studied in the literature from
a theoretical viewpoint. However, the behavior of these functionals is known in a
general way, but not in practical applications and in particular cases. This paper
presents the results of a numerical comparison that attempts to be a basis for a better
comprehension and usefulness of both integrals.
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1 Introduction

Sugeno’s fuzzy integral and Choquet’s fuzzy integral, as functionals defined in order to
evaluate a bounded function over a fuzzy measure, have been widely studied in the lit-
erature. Since its definition in 1974, Sugeno’s fuzzy integral (also called Fuzzy Expected
Value -FEV- when defined over probabilities) has been studied in some different contexts
[7, 9], generalized [6, 11, 12] or characterized [3, 5, 10, 13] by many authors. Also, starting
with Choquet’s original definition by 1953 [4], monotone expectation -ME- has been stud-
ied into the context of fuzzy measures [1, 8] as a generalization of classical mathematical
expectation over probability measures. Studies comparing and relating both functionals
[2, 3] are also available (several works can be found in the cited authors’ bibliography).

However, despite of the number of theoretical works, the behavior of these functionals
is just viewed from a general perspective, interpreting Sugeno integral as a ”weighted
median” and Choquet integral as a ”misshaped average”; in the practice, the comparison
between both functionals is still restricted to the so called Sugeno’s bound for probabilities,
generalized for any fuzzy measure by Bolanos, de Campos and Gonzalez [2]. In this paper
we carry out a numerical comparison attempting to be a reference for the use of both
integrals and for the developement of future applications.

In section 2 some definitions and known results are introduced. In section 3 the
experimentation carried out in this work is described. Experimental results are presented
in section 4, and the paper ends with conclusions in section 5.



2 Definitions and known results

Let P(X) denote the set of all subsets of a set X. Over a finite set X = {x,,2z9,...,2,},
a fuzzy measure is defined as a function g : P(X) — [0, 1] verifying:

1. g(¢) =0

2. g(X) =1

3. ACB=g(A) <¢g(B) A,BePX)

Let be the measure space (X, P(X),g). Sugeno integral of a function h: X — [0, 1]

with respect to a fuzzy measure g is defined as:

n

Sy() = fhog = \/las Ag(H.,)] (1

i=1
where H, is the a-cut for h (H, = {z € X|h(z) > a}) and a; = h(z;) for all z; € X.
Under these conditions, Choquet integral of a function h with respect to a fuzzy meas-
ure g is defined as:

Gy = [hog= [ o()da =Y (0~ ool @)

with ag = 0.
The relation between both functionals is given by the following expression [2]:

5,(0) ~ Oy < ¢ Q

for any fuzzy measure g and any function h.
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Figure 1: S, (h) versus C,, (h).

3 Experimentation

In order to compare the value of both integrals for distinct fuzzy measures, the following
process is drawn: functions h have been defined over a finite set with 10 elements, taking
values randomly over the interval [0, 1]. Then, the results of Cy(h) and S, (h) for each fuzzy
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Figure 3: Sy, (h) versus C,,(h).

measure g have been statistically analyzed. In detail, the experimentation procedure is as
follows:

e Consider a set X with 10 elements, X = {z1,..., 210}
¢ Fix a fuzzy measure g.

e Generate randomly a sample consisting of 1000 functions h : X — [0, 1] by using a
mixed congruential pseudo random numbers generator.

e For each function h, compute the values for S,(h) and C,(h).

e A comparative test and a correlation analysis are carried out among the 1000 pairs
of values obtained from S,(h) and C,(h).

This process has been repeated for different fuzzy measures:

1. One uniform probability measure:

1
g1(x;) = T for each z; € X
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Figure 5: S, (h) versus C,, (h).
. One non uniform probability measure g, (with two values 0.25, three values 0.10 and

five values 0.04).

. One expansive fuzzy measure g; next to a probability (the measures over the sets
increase in a 10 per cent with respect to the measure g;). That is to say:

Let g; be the measure for the first experiment. Given a function h, for any a-cut
from h, H, = {z,,,...,Z,,, }, the measure g3(H,) is calculated as follows:

t= igl(ﬂsai) + <i91(fza,-)> X % =1.1x <i91($a)>

a(H,) ={ A (4)

Note that g3(¢) = 0 and g5(X) = 1.

. One expansive fuzzy measure g, far from a probability (the measures over the sets
increase in a 50 per cent with respect to the measure g;). That is:

t= igl(l'ai) + <i91(%i)> X % =1.5x <igl(xa)>
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Figure 6: Sy, (h) versus C,(h).

9u(H,) ={ A (5)

It is easy to prove that g,(¢) =0y g.(X) = 1.

5. One restrictive fuzzy measure g5 next to a probability (the measures over the sets
decrease in a 10 with respect to the measure g;). That is:

t= igl(mai) - (igﬂ%J) X % =0.9 x (igl(xai)>

0 if H.=2¢
9s(H,) =4 1 if H,=X (6)

t in other cases

6. One restrictive fuzzy measure g far from a probability (the measures over the sets
decrease in a 50 per cent with respect to g;). That is:

m m 5 m
t= Zgl(%i) - <Zgl(%i)> X150~ 0.5 % <Zgl($ai)>
0 if H,=¢
9s(H,) =4 1 if H,=X (7)
t in other cases

Moreover, four Sugeno’s A-measures have been considered (g7, gs, go, g10) given by the
following generic expression:

Given A, BC X, AnNB=¢and X > —1,

g (AU B) = g\(A) + gx(B) + Agx(A)gr(B) (8)

For the experiment, an upper bound equal to 1 has been considered for all g,-measures,
the considered values of A are —0.9 for g;, —0.5 for g5, 2 for g9 and 5 for g;, and measures
assigned to the unitary subsets of X are:
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Figure 7: S, (h) versus C,,(h).
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Figure 8: S, (h) versus C,, (h).

1
gi(w:) = 75 for all o, € X, j=7,8,9,10 (9)

The results of the experiments are shown in tables 1-5. Figures 1-10 give a graphical
representation of the values of Sugeno and Choquet integrals and the fitted regression lines
for each measure.

4 Results

For g, (table 1) one can observe both integrals providing very similar averages (no signi-
ficative differences). Choquet integral is more variable.

About measure g, (table 1), as in the previous case, both integrals show very similar
averages, with more variability for Choquet’s one.

For measure g; (table 2), experimental results show an average significatively higher
for Choquet integral (p < 0.001) than for Sugeno’s one. Variability stands slightly higher
for Choquet integral.

Results for measure g, (table 2) show how the average of Choquet integrals is clearly
higher (p < 0.001). Again, the variability is slightly higher for Choquet integral.
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Figure 10: S,,,(h) versus C,,, (h).

In the case of measure g5 (table 3) the average for Sugeno integral is significatively
higher (p < 0.001), but the variability is again slightly higher for Choquet integral.

The average obtained from Choquet integral with g¢ (table 3) is widely surpassed by
Sugeno integral average (p < 0.001), and the variability is again slightly higher for Choquet
integral.

With respect to the group of gx-measures (tables 4,5), one can say that Sugeno integral
is significatively higher for restrictive measures (g7, gs), and significatively lower for the
expansives ones (gg, g10); in all cases, p < 0.001. It is important to remark that for this
class of measures, the variability of Sugeno integral is a little higher and that correlation
coefficients are clearly lower, due to the greater concentration of the results.

Analyzing the regression lines fitted for each case, smaller sensibility of Sugeno in-
tegral can be observed, showing greater proximity to the theoretical mean value of the
functions (0.50). Generally speaking, it can be said how Choquet integral is more sens-
itive to modifications of the measure with respect to an uniform reference, and it is also
more sensitive to the values of functions h. Sugeno integral performs like an order-based
measure; thus, it is more stable than Choquet’s one. On the contrary, Choquet integral
is similar to the classical arithmetic mean, and so it is more sensitive and variable (note
how the differences with respect to the value 0.50 are clearly greater for Choquet integral
than for Sugeno integral when the probability measure is ”misshaped”).



Results for ¢,

Results for g,

Mean Std. Deviation Mean Std. Deviation
S(h) 0.500099 0.087413 0.499102 0.113516
C(h) 0.500466 0.109700 0.497244 0.135915
C(h)-S(h) | 0.000367 0.048079 -0.001858 0.057919
| Correlation C(h), S(h) 0.905369 | 0.907545 |
| Regression | b=0.721433 | a=0.139047 [ b=0.757980 | a=0.122201 ||

Table 1: Results for g; and g,.

Results for g3

Results for g,

Mean Std. Deviation Mean Std. Deviation
S(h) 0.523650 0.091162 0.593966 0.101550
C(h) 0.540660 0.115091 0.646925 0.120577
C(h)-S(h) [ 0.017010 0.049599 0.052959 0.050641
| Correlation C(h), S(h) 0.910052 | 0.910064 |
| Regression | b=0.720841 | a=0.133920 [ b=0.766457 | a=0.098126 ||

Table 2: Results for g; and g,.

Results for g

Results for gq

Mean Std. Deviation Mean Std. Deviation
S(h) 0.475613 0.084324 0.333643 0.055272
C(h) 0.460272 0.104752 0.299494 0.090752
C(h)-S(h) | -0.015342 0.047521 -0.034149 0.054687
| Correlation C(h), S(h) 0.895794 | 0.827370 |
| Regression | b=0.721104 | a=0.143710 [| b=0.503905 | a=0.182726 ||

Table 3: Results for g5 and gs.

Results for g,

Results for gg

Mean Std. Deviation Mean Std. Deviation
S(h) 0.450682 0.100068 0.474461 0.102634
C(h) 0.417336 0.077592 0.451082 0.081674
C(h)-S(h) | -0.033346 0.049804 -0.023380 0.047924
| Correlation C(h), S(h) 0.586093 | 0.758637 |
| Regression | b=0.755865 | a=0.135233 [ b=0.953327 | a=0.044433 |

Table 4: Results for g; and gs.



Results for gqg Results for g
Mean Std. Deviation Mean Std. Deviation
S(h) 0.575307 0.138837 0.638784 0.137876
C(h) 0.629780 0.123005 0.690128 0.139022
C(h)-S(h) 0.054473 0.047231 0.051344 0.041511
| Correlation C(h), S(h) 0.594171 | 0.679747 |

| Regression | b=0.670650 | a=0.152945 | b=0.674144 [ a=0.173539 |

Table 5: Results for gg and g;0.

5 Conclusions

Attending the obtained results, it can be said that, according to the way both integrals
are calculated, Choquet integral can be viewed as a weighted average, with variability and
sensibility of average measures. On the contrary, Sugeno integral seems a generalization
of the concept of median. So, the use of Sugeno integral can be suggested in order to try
to obtain the measure of ”size” of a function, that is, the coincidences between the values
of the measure and the values of the function that is being integrated. However, Choquet
integral is useful when one is interested on determining the mean values of the functions
in the arithmetic sense.

So, it can be deduced from the results that both functionals are complementary. Thus,
each integral can lead to the definition of clearly different theoretical systems and practical
applications.
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