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Abstract 
 

In the context of the classical real-frequency and complex-wavenumber (k) integral 

representation of the elastodynamic Green’s function for a plane layered elastic 

medium, leaky modes are defined as those waves associated with complex-k poles in 

the P-SV integrands representing continuations of the higher Rayleigh modes below 

their cutoff frequencies. Nevertheless, for some types of models, the path of the leaky-

mode poles through the complex plane (for varying frequency) can intercept the real k 

axis at particular frequencies, cancelling the complex character which was conferring to 

these wave the exponential decay as the horizontal distance increases. Starting from the 

Haskell–Harkrider formulation, the characteristics of these slowly-attenuating leaky 

waves and their excitation by surface forces are investigated. The conditions for 

existence and their frequency are evaluated for the particular case of an elastic layer 

over a halfspace. Some numerical simulations point to the detectability of these waves 

around the fundamental resonance of vertical S waves fS0 in standard frequency-domain 

observables defined for random elastic wavefields. These results provide new insights in 

the behavior of coherences of ambient seismic vibrations when a high velocity contrast 

exists. 
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1. Introduction 

 

The behavior of the elastodynamic Green’s functions for a layered structure around the 

fundamental resonance of vertical S waves, fS0, is an issue of importance in several 

branches of seismology and exploration geophysics. Even for simple ground models, 

the composition of the wavefield around fS0 may present a significant complexity. 

Maximum or infinite values in the ellipticity of the fundamental Rayleigh mode, the 

cutoff frequency of the first higher mode, the Airy phase of Love waves and a 

substantial increment in the relative power of P-SV body waves often occur near fS0 in 

simple models (e.g., Kono and Omachi [1], Tamura [2]). As a result, active and passive 

methods of seismic exploration based on analysis of Rayleigh waves may show 

perturbations in those frequencies (e.g., Tokimatsu [3], Ohori [4]). 

 

On the other hand, the Green’s functions between surface source and receiver are the 

key for advanced modelling of the background seismic wavefield (e.g., Sánchez-Sesma 

et al. [5], Lunedei and Albarello [6]). Thus, their precise description around fS0 is 

required for supporting or improving widespread ambient-noise techniques for 

estimation of ground resonances and amplifications of the seismic shaking (Nakamura 

[7]). 

 

This article is devoted to the investigation of some properties of these Green’s functions 

around fS0. In particular, we study the role of a type of guided P-SV waves which 

appears in models with high velocity contrasts as the contributions of real-k poles in the 

leaky-modes branches. 

 

In the extensive bibliography on computation of the complete elastodynamic Green’s 

functions in layered media, several alternative schemes involving approximations of 



 

 

their integral representations have been developed. Most of these methods evaluate 

integrals on the complex-frequency plane, on the complex wavenumber plane or on 

both of them (e.g. Gilbert [8], Ewing et al. [9], Haddon [10]). Analytic developments 

and numerical procedures have been used in different proportions. For example, body 

and surface wave contributions can be either computed together (e.g. Bouchon and Aki 

[11]) or calculated by well separated schemes resulting from the application of 

complex-plane integration methods. In the simplest versions of this latter approach (e.g. 

Wang and Herrmann [12]), Rayleigh waves arise as the contributions of real-k poles in 

the P-SV integrands, being evaluated from the Cauchy’s residues theorem. On the 

contrary, body waves result from integrations along branch-lines laying on the real- and 

the imaginary-k axes. In principle, phase velocities of Rayleigh waves range, as much, 

between the S wave velocities of the top layer and the halfspace (e.g. Ben-Menahem 

and Singh [13]). The set of pole contributions and the path of the branch-line integrals 

to be evaluated are different for other choices of the integration contour. 

 

In this work, we use real- and complex-wavenumber formulations to study a type of 

trapped P-SV wave system occurring at particular frequencies in some structures with 

sharp velocity increase with depth. The nature and the conditions for existence of these 

guided waves, which behave as Rayleigh-like waves spreading faster than βN, are 

analyzed. They represent a limit situation appearing within broader spectral bands at 

which P-SV body waves generated by surface loads spread with high power at large 

horizontal distances. We show that these arrivals can be better incorporated in the 

calculations of Green functions in terms of leaky-modes poles. In fact, they correspond 

to isolated real-k points of the leaky-mode k() paths, representing waves that attenuate 

slowly in the radial direction due to the cancellation of the imaginary component of k. 

No radiation of S waves into the halfspace occurs at these poles. We will use numerical 

examples to show that these waves can produce detectable effects in two frequency-

domain observables defined in ambient noise seismology: the SPAC coefficient and the 

f-k power spectrum (Aki [14], Lacoss et al. [15]). The usual interpretation of these 

methods, based on the predominance of surface waves, fails in these specific conditions 

and frequency bands. Full-wavefield computations are then required. 

 

Next, we derive useful conditions to locate these anomalous real-k poles in the Green’s 

function integrand for a layered halfspace, as well as the main properties of the 

associated waves. After stating the connection between these poles and the leaky-mode 

formalism (Section 3), the frequencies and velocities of the slowly-attenuating leaky 

waves are computed for the case of a single layer (Section 4). The effects in ambient 

noise seismology methods are assessed in Section 5, and finally, some published 

experiments in which these waves may have played an important role are discussed in 

Section 6. 

 

2. Fast P-SV guided waves in a layered elastic halfspace  
 

We analyze a type of poles which occasionally arise in a classic representation of the 

frequency-domain Green’s function in terms of integrals on the horizontal (radial) 

wavenumber k. Consider N-1 parallel elastic layers overlying an elastic halfspace, with 

m , m , m  and mh  representing the P- and S-wave velocities, the mass density and 

the thickness of the m-th medium ( Nh = ). A concentrated impulse force is applied at 

the origin of coordinates x = 0, in the free surface. The force acts either in the vertical 

direction (subscript j = z, with Z axis is directed downwards) or radially towards the 



 

 

point with cylindrical coordinates )0,,( r  (j = r). Then, the Fourier-transformed vertical 

and radial displacements at point ),,( zr   due to PSV-type (in-plane) waves are called 

Green’s functions );0;,( zrGPSV

zj  and );0;,( zrGPSV

rj , respectively. These quantities can 

be first expressed in terms of an integral on k (real and positive for now) as follows:  
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where (·)nJ  stands for the Bessel function of first kind and order n. For any 

contribution ( , k), the boundary conditions of no upgoing energy and no 

inhomogeneous waves with unbounded amplitude are fulfilled inside the halfspace. 

Explicit expressions of the integrands were given by Harkrider [16] as well as the rest of 

the components of the P-SV Green’s tensor (for arbitrary source direction and receiver 

position), which can be easily formed by linear combination of the four basic integrals 

(1-4). 

 

In this framework, Rayleigh waves appear naturally as (real- , real-k) roots of the 

denominator RF  causing simple poles in the integrands, as described in the earlier work 

of Haskell [17], Eq. 2.21. As it is well known, for any ground model and frequency, 

there is, at least, one root of RF  (the fundamental mode) and the maximum velocities of 

these Rayleigh waves (including higher modes) are bounded by the halfspace S wave 

velocity N . Nevertheless, as will be shown in Sections 3 and 4, particular real-  real-

k pairs solving 0RF  can be found for k smaller than N/   (i. e. corresponding to 

horizontal phase velocities greater than N ). Following Harkrider [16], the full 

expression of RF  can be shortened to LMNKFR  , where the following definitions 

have been used: 
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A represents the product of the Haskell’s layer matrices (Haskell [17] or e.g., Eqs. 3.185 

and 3.190c in Ben-Menahem and Singh [13]), kc  , 
222 cmm   , 
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We can now study those zeroes of RF  due to the simultaneous fulfillment of the 

equations K = 0 and L = 0 with N < c < N . As it has been demonstrated in Appendix 

A, any solution ( p , pk ) of this system corresponds to a wave with the following 

properties: 

 

i) the particle motion at surface follows an elliptical trajectory with imaginary ellipticity 

ratio NMwu /  (i. e. 2/  phase lag between horizontal and vertical components, 

just as regular Rayleigh waves);  

 

ii) the wavefield at the halfspace consists of a pure inhomogeneous P wave with 

exponentially decaying amplitude as depth increases;  

 

iii) its excitation by a surface force is given by the Rayleigh-wave medium response 

(Harkrider [16]):       1
///




pp
kLNMkKiGA  , where G follows 

Haskell`s [17] definition (Appendix A). 

 

In the illustrative case of a single plane elastic layer overlying a halfspace (N = 2) with 

2  > 1 , it is clear from ii) that the wavefield components at p  can be decomposed in 

terms of upgoing and downgoing P and S waves as sketched in Figure 1. P waves inside 

the layers can be either of homogeneous (Fig. 1a) or inhomogeneous type (Fig. 1b).  

         

 
  

Figure 1. Diagram of the possible wave system components at ( p , pk ) in terms of upgoing 

and downgoing P and S waves or their inhomogeneous counterparts. (a) Case 
1c ; (b) case 

1c . The amplitude of the S waves in the halfspace vanishes for this wave system. 

 

 



 

 

3. Connection with the leaky-modes formalism. 

 

The resolution of integrals (1-4) is often performed by extending the integral in k or/and 

in   to the complex plane and subsequently deforming the integration contour in order 

to avoid passing through any zero of RF . The contributions of these poles of the 

integrands are finally taken into account by summing the corresponding residues 

(Cauchy’s theorem). In this section, the complex-k real-  approach will be used. 

Several ways to solve these complex-variable integrals have been discussed in the 

literature (e.g., Ben-Menahem and Singh [13], Watson [18], Wang and Herrmann [12]). 

Major variations between methods lie in the different ways of defining the square roots 

in 
N

 and 
N

  in the complex plane because they cause branch-cut discontinuities in 

the integrand that have to be considered for choosing the integration contour. The 

simplest choice (e. g. Wang and Herrmann [12], Tamura [2]) consists in using the 

principal value of the square root and it has the advantage of keeping all the roots of RF  

on the real k axis (Fig. 2), where their numerical computation is simpler. The branch-cut 

discontinuities of both 22

N
kk   and 22

N
kk   when the radicands are negative reals 

produce jumps of the integrand on the whole imaginary axis as well as in the interval 

[
N

k
N

k ] of the real axis.  

 

As was noticed by Laster et al. [19], a weakness of this choice resides in the difficulties 

to evaluate some oscillatory events by means of the branch-cut integrals. These 

instabilities are related with the existence of complex-k roots of RF  at different 

Riemann sheets (i.e. appearing only under alternative definitions of signs in the roots of 

N
 and 

N
 ) but still located close to the branch-cuts and occasionally on them. 

Anomalous poles of this type have been described in more detail by Surkov and 

Reshetnikov [20]. Then, the most convenient procedure to handle these cases is to 

reroute the branch-cuts and the lines of integration into the complex k region in such a 

manner that the integrand is a rapidly decaying function. As a result, residues at 

complex-k poles (leaky modes) have to be summed into the Green’s function along with 

Rayleigh wave contributions. It is clear that the guided waves described in section 2 

represent extreme cases of instability in the original branch-line integrals caused when 

the path of the leaky mode poles occasionally reaches the real axis on the integration 

contour (red circles in Fig. 2). Model 1 in Table 1, with  and h standing for mass 

density and layer thickness, can be used to illustrate this case. It is among the models 

used by Tuan et al. [21] for studying Rayleigh wave properties. 

 



 

 

 
 
Figure 2. Possible integration path (thick black line) for the P-SV integrals in Eqs. (1-4) 

assuming that the principal value of the square roots is taken for evaluation of 
N

 and 
N

 . 

This choice of Riemann surface prevents for existence of poles at complex k’s. Branch-points 

and branch cuts are shown with X and gray lines, respectively. Black circles represent possible 

Rayleigh wave poles. Red circles represent possible high-velocity poles associated to the 

slowly-attenuating leaky waves studied here. An additional pole at k = 0 appears in the 

calculation of );0;,( zrGPSV

rr  (Wang and Herrmann [12]). Cases Re[
NXk ]<0 and 

Im[
NXk ]<0, X = ,   fulfill the boundary conditions in the halfspace, wherein the amplitudes 

of P and S waves assumed to be proportional to )exp(
N
zikti X  . 

 

Table 1. Example models presenting a pole in the P-SV integrand at 
2

k < k < 
2

k  

 

h  

(m) 

  

 (m/s) 
  

(m/s) 

 
(g/cm

3
) 

Model 1 

50 663.3 200 2.0 

∞ 1370.1 6.666


 2.7 

Model 2 

25 1350 200 1.9 

∞ 2000 1000 2.5 

 

To investigate the origin of these real poles, the scheme of branch-cut rerouting used by 

Laster et al. [19], Ben-Menahem and Singh [13] or Watson [18] is followed. 

Conjugation of the integrands is required to meet the definition of Fourier transform 

used in the first and second references. Therefore, the sign of 
N

  are changed in the 

region Im(k) > 0, 0  Re(k) < 
N

k  as well as in the region Im(k) < 0, –
N

k < Re(k)  0, 

proceeding in a similar way for 
N

 (k, 
N

k ). It sets the branch-cut discontinuities going 

upwards from 
2

k  and 
2

k , as shown in Fig. 3c. Thus, the full integration path 

encompasses the first and second quadrants, going along the real axis through the 

second and fourth quadrants and encircling the branch-cuts in the first one (e.g., Ben-

Menahem and Singh [13], p. 264, after complex conjugation). The additional complex-k 

poles exposed in the regions of the first quadrant with redefined 
N

  and/or  
N

  have 



 

 

to be considered in the sum of residues. Due to the properties of RF , each pole at k in 

the mentioned regions of the first quadrant has a counterpart located at –k  as well as 

two more roots at k
*
 and –k

*
 located at lower Riemann sheets. 

 

The contact of the path of leaky-mode poles with the real k axis at a particular frequency 

pf  has been shown by a green dot in Fig. 3c. The asterisks in that panel show the route 

of the leaky-mode branch obtained by continuation towards low frequencies of the first 

higher mode of Rayleigh waves. In order to keep the branch-cuts fixed while frequency 

varies, the complex horizontal slowness plane has been used in that figure instead of k. 

For Model 1, pf  lies very close to the resonance of vertical S waves )4/(10 hfS   at 

1Hz and corresponds to phase and group velocities (c = ]Re[/ k , cg = ]Re[/ kdd ) of 

874 m/s and 352 m/s, respectively. The separate evolution of the real and imaginary 

parts of these poles for varying frequency is shown in Figs. 3ab in terms of phase 

velocity and attenuation expressed in dB/km. The imaginary part of these roots 

produces the exponential decay of amplitude with distance, distinctive of the leaky 

modes. As was demonstrated in Section 2, the wu 
 ratio for these waves becomes 

imaginary at pf  (same as for Rayleigh waves), with values of )Im( wu   close to a local 

maximum and predominance of horizontal motion (Fig. 3d).  

 

The comparison between medium response curves (Fig. 3e) shows that the leaky modes 

are much more excited around pf  (~
0Sf ) by a vertical load than the fundamental 

Rayleigh mode. This dominance is also illustrated by the synthetics waveforms of 

);0;0,( trGPSV

zz  depicted in Fig. 4 after convolving with a 0.28s long parabolic pulse. The 

pulses associated with the leaky waves studied here are identified in Fig. 4b by applying 

a Gaussian filter H( f ) with central frequency pf  = 1Hz. For a filter parameter of about 

10 (or larger), i.e. H( f ) = exp{10 [( f  pf )/ pf ]
2
}, the spreading of the envelope of 

the filtered traces, which have been enlarged in amplitude, matches well the theoretical 

group velocity of the leaky mode. 

 

 
 
Figure 3. Leaky-mode poles (blue symbols) resulting from continuation of the first higher mode 

of Rayleigh waves below its cutoff frequency for the model in Table 1. The green dots show 



 

 

values at pf . (a) Phase (solid) and group (dashed) dispersion curves of the fundamental (red 

lines) and the first higher mode (blue lines) of Rayleigh waves. Blue asterisks represent leaky 

modes. (b) Attenuation of leaky waves as a function of the frequency calculated from Im[k]. 

Exponential attenuation appears neither at pf  nor for the Rayleigh mode. (c) Path of the leaky-

mode pole through the complex- horizontal slowness plane ( /k , with real  ) as frequency 

varies. The branch-cuts have been chosen going upwards from  /
2

k = 2/1   and  /
2

k =

2/1  . (d) Horizontal-to-vertical ratio wu   and (e) medium response for the leaky modes 

(symbols), the fundamental (red lines) and the first higher mode (blue lines) of Rayleigh waves. 

 

 
 

Figure 4. (a) Synthetic Green`s function );0;0,( trGPSV

zz  for Model 1 (Table 1) calculated at 

several distances and convolved with a 0.28s long parabolic pulse. The first arrival time curves 

of P and SV waves are indicated with red and blue lines, whereas the cyan line shows the arrival 

time of the studied guided wave calculated from its group velocity cg( pf ) of 352 m/s (Fig. 3a). 

(b) 
PSV

zzG  functions after bandpass filtering around pf = 1Hz and their respective envelopes. A 

Gaussian filter with bandwidth parameter 10 and subsequent rescaling have been applied.  

 

4. Frequency and velocity of slowly-attenuating leaky waves for a layer-over-

halfspace model. 
 

The existence of slowly-attenuating leaky waves due to the simultaneous fulfillment of 

equations K = 0 and L = 0 and the determination of the frequency and velocity of these 

waves can be easily addressed by numerical procedures. For simple models consisting 

of a single layer overlying a halfspace, K(c, k) and L(c, k) depend on kh through 

trigonometric functions with arguments hk
1

  or hk
1

 . A suitable procedure based on 

eliminating the dependence on hk
1

  between both equations is described in Appendix 

B. This step leads to a necessary condition for (cp, kp) with the form 

0Z)(anY2)(anX
11

2  hkthkt   , with X, Y and Z depending on c and on the 

model velocities and densities, which provides a family of tentative relationships k(c) 



 

 

(note the multivalued character of the square root and function tan
-1

). Once k(c) are 

inserted in any of the original equations, the problem is reduced to the numerical 

solving a single equation in the unknown c. 

 

As it has been shown above, this type of guided waves may appear on the continuation 

of the first higher mode to lower frequencies as a leaky-mode curve. Thus, it is expected 

that the frequencies of these waves will be around the resonance frequency fS0. To check 

this conjecture, fp (if it exists) has been calculated for a representative set of models. We 

first fix the Poisson's ratio in the halfspace 2 at 0.3449 and the density contrast 1 / 2 at 

0.7391 and vary β1/ β2 and 1. These constants are taken from a previous work by Tuan 

et al. [21] devoted to studying the shape of the Rayleigh wave ellipticity. The (lowest) 

frequencies at which this slowly-attenuating leaky wave appears are shown in Fig. 5a. 

Next, 1 is fixed at 0.3449 and 2 is varied together with β1/ β2, leading to the results 

shown in Fig.5b. The maximum deviations of the fp values from f0 are about  30% in 

Fig. 5, though they are smaller for the most usual Poisson’s ratios and β1/ β2 below ~0.4. 

For most of the evaluated models, the wave system contains homogeneous P waves in 

the layer (c > α1), corresponding to the scheme in Fig. 1a. On the contrary, all the P 

waves are inhomogeneous for some models with high 1 and relatively low velocity 

contrast (i.e., large enough β1/ β2), which have been marked with dots in Fig.5a. The 

anomalous poles studied here are absent for models in these grids with lower velocity 

contrast and higher Poisson's ratios. 

 

 
Figure 5. Lower frequency at which slowly-attenuating leaky waves exist for a set of models 

consisting of a layer overlying a halfspace. (a) fp / f0 for a constant 2 = 0.3449; (b) same for a 

constant 1 = 0.3449. A density ratio 1 / 2 = 0.7391 was used for all models. Dotted cells 

distinguish models for which all P waves are of inhomogeneous type (i.e., following the sketch 

in Fig. 1b). The X identifies Model 1 (Table 1). The intersection between both panels is shown 

with a vertical black line. 

 

5. Effects on the coherences of diffuse wavefields 

 

Even though the predominant role of surface waves in the seismic noise wavefield has 

been recognized in broad frequency bands and in most of the experimental situations, 

the composition of these vibrations around the resonance frequency fS0 is still a topic of 

current research in seismological engineering (e.g. Endrun [22]). This topic has essential 



 

 

implications in seismic site effects evaluation and important consequences regarding the 

applicability of passive seismic methods of seismic exploration. These aspects have 

been mainly tackled from numerical and experimental points of view (e.g., Bonnefoy-

Claudet et al. [23], Chávez-García et al. [24]). 

 

Under the diffuse field approach (DFA), correlations of ambient noise can be directly 

connected with the elastodynamic Green’s functions between surface source and 

receivers (Shapiro and Campillo [25]). As was shown by Yokoi and Margaryan [26], 

after a convenient normalization, the cross-spectra between pairs of ambient noise 

records defined by Aki [14] equal the imaginary part of the corresponding Green’s 

functions in frequency domain. Taking advantage of this way of having experimental 

access to the Green’s functions, the detectability of the slowly-attenuating guided waves 

described in Section 2 are investigated below. We pay attention to the effects of the 

complex wavefield composition around fS0 on two phase velocity estimators broadly 

used in ambient noise seismology: the SPatial Auto-Correlation coefficient and the 

conventional f-k power spectrum. 

 

5.1. Effects on the vertical-component coherence 

 

On the basis of the DFA, the coherence between vertical microtremor records at points 

1r


 and 2r


 with interstation distance r (v-SPAC coefficient following Aki [14]), can be 

written, as 

 

)];0;0(Im[

)];0;0,(Im[]Re[
),(

2211

12
2,1






zz

zz

G

rG

CC

C
r   .     (10) 

 

jlC  in (10) represents )()(*

jl rwrw


, ·  stands for average over a set of long enough 

time windows and )( jrw


is the Fourier transformed vertical motion at jr


. Dependences 

of jlC , w , and 2,1  on  are understood. The right hand side of Eq. (10) becomes 

)'(0 rkJ   in frequency bands wherein a single 'k  (or horizontal velocity  / 'k ) 

dominates the vertical component. Although this case usually corresponds to the 

existence of a predominant mode of Rayleigh waves [14], the same functional behavior 

is expected at p if slowly attenuating leaky modes are dominant contribution. 

 

Figure 6a shows the results of a full-wavefield computation of )(2,1 f  for Model 1 

(Table 1) and r = 230 m. For this radius, a bump appears around pf , approximately in 

the band 0.7-1.3 Hz, wherein leaky waves and the higher mode are expected to be the 

dominant contributions on the basis of the values of the medium responses (Fig. 3e). 

Features similar to this have been described in the literature and interpreted in terms of 

contribution higher Rayleigh modes (Roberts et al. [27], Asten [28], Ikeda et al. [29]). 

The apparent loss of correlation at 0.85 Hz is therefore an effect of the return to the 

fundamental-mode curve as the frequency decreases after a significant band dominated 

by leaky modes spreading with higher velocity. 

 



 

 

 
 

Figure 6. (a) Full-wavefield calculation of )230(2,1 m

 

under the DFA for Model 1 in Table 1 

(black line). Respective curves for the fundamental and first higher Rayleigh modes as well as 

for the leaky mode of interest are shown with red line, blue line and blue asterisks. (b) Rayleigh 

wave dispersion curves and leaky modes (asterisks and crosses). Cyan and green dots show 

velocities 'c  determined by fitting 2,1  vs. r with a function )'/(0 crJ  , as shown in Fig. 7. 

 

To better assess the composition of the wavefield in this band and its effects on the 

SPAC curve, it should be useful to examine the coherences obtained for a range of 

interstation distances. Full-wavefield 2,1  vs. r curves have been represented in Fig. 7 

for 16 frequencies and subsequently fitted to the expression )'/(0 crJ  . The optimum 

'c  for each frequency has been represented with dots in Fig 6b together with the 

theoretical dispersion curves and leaky mode velocities. The poor fitting of the 

coherences in Fig. 7 for frequencies up to ~ 0.9Hz confirms that 2,1  (and Gzz) is not 

dominated by a unique horizontal velocity in that frequency band. Moreover, the mean 

horizontal velocities in this range grow steeply as frequency increases, from 

fundamental-mode Rayleigh-wave velocities (about 600m/s at 0.7Hz) to the leaky mode 

branch velocities of 975m/s at 0.9Hz (Fig. 6b). The shape of 2,1  is well fitted by a 

Bessel function
 

at Pf  (1Hz for Model 1) indicating horizontal propagation of the 

energy.  

 



 

 

 
Figure 7. Full-wavefield calculation of )(2,1 r  under the DFA (open circles) for Model 1 at 

frequencies around Pf . For each frequency (panel), the best fittings of )(2,1 r  with a function 

)'/(0 crJ   is shown with black line and labeled with the apparent value of 'c . 

 

In this case, the retrieved velocity of 875m/s (green dot in Fig. 6b) matches perfectly the 

theoretical value for slowly-attenuating leaky waves obtained by solving K = L = 0 

(Sections 2 and 3). The predominance of this guided wave is the consequence of the 

weak medium response of the fundamental Rayleigh mode at Pf  (Fig 3e) and a 

negligible contribution of the branch-line integrals. The resemblance between 2,1  and a

)'(0 rkJ  function is preserved at frequencies higher than Pf  due to the significant fall in 

the medium response of the fundamental Rayleigh mode. Afterwards, the apparent 

velocity continues through the first higher mode, from its cut-off frequency (1.19Hz) up 

to about 1.3Hz, where it begins to return to the fundamental one with some loss of 

fitness of 2,1  to the Bessel function. 

 

5.2. Effects on the f-k spectrum 

 

The f-k method (e.g. Lacoss et al. [15]) is another widely used algorithm for 

experimental analysis of propagation velocities of waves contained in ambient noise due 

its capability for resolving multiple velocities and usage with flexible array setups. To 

assess the detectability of the leaky modes and the slowly-attenuating leaky waves for 

the conventional f-k beam-forming power estimator FKCVP  in a simple yet representative 

case, we consider a centreless circular array with radius r composed of an odd number 

NS of evenly spaced sensors. Ideally ),( kFKCV kP   should present peaks at wavenumbers 

'k  and azimuths 
k'  coinciding with the characteristics of the energetic arrivals in the 

illuminating wavefield. Assuming that the wavefield is diffuse, the average of 

),( kFKCV kP   over the observation directions 
k  will be (Appendix C) 
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where 
SN/2   and cte represents the frequency-dependent ratio between the 

power-spectrum of the vertical motion and the imaginary part of the Green’s function at 

the source: )]0;0(Im[ zzjj GcteC   (e.g., Sánchez-Sesma et al. [5]). Since the considered 

wavefield is azimuthally homogeneous, ),( kFKCV kP   will depend weakly on 
k  

provided that NS is large enough. For NS tending to infinity, the sum in (11) turns into an 

integral between 0  and  , the term SN/)0(Im zzGcte  vanishes and 

k
kFKCVkFKCV kPkP


 ),(),(  .  

 

Figure 8 shows the theoretical shape of 
k

FKCVP


 for Model 1 in a frequency band 

around pf  by using full wavefield computation for 
zzG . NS was fixed to 79 and the 

radius r of the virtual array was 834 m ( 6rk p ) in order to obtain enough resolution at 

long wavelengths (e. g., setting kr  is suggested for regular polygonal arrays by 

SESAME’s [30] guidelines). The highest peak in 
k

FKCVP


 with rk /'   is identified at 

each frequency and used for computation of the main apparent horizontal phase velocity 

'/' kc  . The results are shown in Fig. 9 with filled squares and compared with 

Rayleigh waves and leaky modes velocities. The secondary peaks of 
k

FKCVP


 

discernible in Fig. 8 may either represent propagation of another seismic phase or be an 

effect of the limited performance of the beam-forming method or of the array settings 

(e.g., spatial aliasing). To investigate this fact, the curves have been compared with the 

theoretical shape when a single horizontal velocity exists, which correspond to 

assuming  )2/sin2(Im rGzz )2/sin'2(0 rkJ  in Eq. (11), taking 'k  as the 

wavenumber of the main peak. A scale factor has been introduced to these curves (solid 

black lines in Fig. 8) to fit also the amplitude of the main peak. At those frequencies for 

which the second higher peak cannot be explained with the sole velocity 'c , the 

corresponding secondary wavenumber ''k  has been picked. The secondary velocity 

''/'' kc   is also shown with open squares in Fig 9. As shown, these velocities match 

well the fundamental Rayleigh mode, the first higher mode or its continuation as a leaky 

mode. 

 



 

 

 
Figure 8. Synthetic azimuthally averaged )(kPFKCV


 spectra (blue lines) for the full wavefield 

after normalization by );0;0( fGzz . The rescaled theoretical values of 
k

FKCVP


 for the single 

horizontal velocity 'c  corresponding to the main peak are shown with solid black lines. The 

analogous functions for the second higher peaks are shown with dashed black lines whenever 'c  

fails to reproduce the global shape of FKCVP . Velocities 'c  and eventually ''c  are displayed next 

to the corresponding peaks. Vertical dashed lines indicate the minimum reliable value of k, 

estimated as kmin=π/r. Model 1 in Table 1 and a regular polygonal array with r = 834 m and NS = 

79 were used in these computations. 

 

The shape of 
k

FKCVP


 in the band from 0.95 to 1.25 Hz corresponds to a single phase 

velocity which matches well the first higher mode of Rayleigh waves or its continuation 

as a leaky mode branch (Fig. 9). Below 0.95 Hz, the full-wavefield f-k spectrum can be 

no longer explained from a well-defined velocity but it reflects as a mixture of waves 

with two different velocities, one corresponding to fundamental-mode Rayleigh waves 

(c ~ 600 m/s) and another to body waves, with c ranging from 980 m/s at 0.9 Hz up to 

1550 m/s at 0.7 Hz, which can be accurately described in terms of leaky waves. The 

array radius used is too small to resolve frequencies below 0.7 Hz. An steep transition 

between these two patterns occurs near pf . The fundamental mode becomes again 

perceptible at 1.35 Hz, with growing peak amplitudes as frequency increases. If the 

radius of the array is reduced to half (417 m), its resolution shifts toward higher 

frequencies and the f-k power estimator is able to follow the fundamental mode, which 

is the only relevant velocity up to about 3Hz (gray triangles in Fig. 9).  

 



 

 

 
 

Figure 9. Apparent horizontal phase velocities obtained from f-k analysis as described in Fig. 8. 

Filled and open squares correspond to main peaks and secondary peaks in the f-k spectra. 

Triangles show results for a smaller array with r = 417 m. Rayleigh wave phase velocities 

(colored curves) and leaky mode (asterisks and crosses) for Model 1 are shown for reference. 

 

6. Discussion  

 

The synthetic example analyzed above shows predominant body wave propagation in 

the SPAC coefficient in a significant frequency band which spans from 0.7 fS0 to 1.2 fS0. 

Their coexistence together with the fundamental Rayleigh mode is perceived in the f-k 

spectra in a broader band. This behavior contrasts with the dominance of the 

fundamental or higher modes of Rayleigh waves assumed in most of the recent works 

dealing with vertical-component ambient noise. The apparent horizontal velocities of 

these body-waves match well those of the leaky modes (Figs. 6b and 9), so that the 

contribution of the integrals along the branch-cuts shown in Fig. 3c appears to be 

negligible. At p , these numerical experiments show that i) the coherence between 

vertical components vs. r fits well a J0(kr) function and ii) the f-k spectrum presents a 

clear peak, with the whole shape of 
k

FKCVP


 being reproducible by a sole horizontal 

velocity. The estimated phase velocity matches well the theoretical value of pc  

determined in Section 4. These two observations, which fail at frequencies as close as 

0.9 p , show that the wavefield at p  is dominated by the slowly-attenuating leaky 

waves studied here. 

 

Many experimental studies have revealed deviations of the vertical-component ambient 

noise coherences from regular J0-type shapes, i.e. from J0 [2 π s(f) f] relations with 

smoothly increasing horizontal slowness s(f)=1/c(f). Low absolute coherences in broad 

frequency bands (usually below fS0) may reveal poorly correlated signals due to 

electronic noise or attenuation. Nevertheless, features such as bumps, narrow picks or 

troughs should be interpreted in terms of the wavefield composition. Tokimatsu [3], 

Lunedei and Albarello [6] and Ohori [4], among others, described anomalies in the 

effective dispersion curves due to jumping between the fundamental mode and the first 

higher modes of Rayleigh waves from numerical or experimental approaches. If the 



 

 

interstation distance is small enough, that perturbations are mapped into the first 

decreasing part of the SPAC coefficient at low-frequencies, where they are not masked 

by the Bessel function oscillations (e.g. Fig. 6a in Asten [28]). In contrast with the 

arguments given in those papers, the example in Section 5.1 (Fig. 6) demonstrates that 

full-wavefield calculations may be required to account for the bumps, which could be an 

effect of both body waves and higher surface wave modes in general cases. Recently, 

Chávez-García et al. [24] have studied small troughs or loss of correlation found in 

narrow bands around the local fS0 in a collection of experimental ambient noise 

coherences. Our results suggest an interpretation in terms of incremented coherences in 

a band above fS0 due to coexistence of the mentioned faster propagation modes. This is 

preferable to assuming an actual drop in the fundamental mode correlation due to poor 

signal-noise ratios which are not fully supported by the experiments.  

 

Bonnefoy-Claudet et al. [23] [31], performed f-k analysis of synthetic ambient noise 

wavefields, paying special attention to their composition around fS0 and its harmonics. 
The horizontal phase velocity derived from their virtual array experiment in [23] 

showed sharp increments around fS0 which were interpreted as effects of poor 

performance of the f-k method. The elastic version of the structure used, consisting of a 

soft layer over a halfspace, has been listed in Table 1 (Model 2). In that case, a zero in 

FR at 1.921Hz (fp / fS0 = 0.961) results from procedure described in Section 4. It 

corresponds to a phase velocity of 1354m/s (larger than β2 = 1000 m/s). P waves in the 

layer are of homogeneous type at that frequency though they spread almost horizontally 

(86º incidence angle on the interfaces). Even though larger array apertures would be 

recommendable for accurate analysis, the effect of guided waves with slow amplitude 

decay is probably behind their results. 
 

7. Conclusions 
 

Numerical calculations in simple layered models (e.g., Tamura [2]) showed that guided 

P-SV body waves may represent an important component of the Green function 

between surface source and receiver in particular frequency bands. The energy of these 

waves decay as slowly as surface waves for increasing distances, so that they remain 

detectable far away from the sources. In this paper we have explored the striking 

similarity between the P-SV wave-system and Rayleigh waves at some particular 

frequencies p  fulfilling K = L = 0. These waves correspond to isolated points in the 

leaky mode path at which )( pp kk   become real, with a phase velocity ppp kc /  

faster than S waves in the halfspace. The contributions of these zeros of ),( kFR   

presents several Rayleigh wave characteristics, such as real Harkrider’s medium 

responses, 2/  phase lags between horizontal and vertical components and ~ r 
-1/2

 

decay of amplitudes with distance, instead of the  r 
-1/2

 exp[Im(k) r] decreasing of 

regular leaky waves. The cancellation of the homogeneous downgoing S wave at p  

implies that the wavefield in the halfspace consists of an inhomogeneous P wave only, 

unlike surface waves.  

 

The existence and the frequency of these waves have been investigated for models 

consisting of a layer with moderate to high velocity contrasts with a stiffer halfspace. 

For the fixed 2 and density contrast used by Tuan et al. [21] and usual Poisson’s ratios 

1 in the layer from 0.25 to 0.49, S wave velocity contrasts larger than 2.16 - 2.48 are 

required. In these cases, a pole with the mentioned characteristics appears close to fS0, 



 

 

with maximum deviations from that value of -5% and +30%. A similar range for fp has 

been found if 2 is varied instead of 1, though much larger negative deviations from fS0 

appear for very low values of 2. 

 

We have studied the perturbations induced by these guided waves in two methods of 

experimental estimation of phase velocities in stochastic wavefields based on coherence 

measurements. For this purpose, a simple profile presenting slowly attenuating leaky 

waves has been considered along with the validity of the DFA, taking all the 

propagation modes into account. The numerical simulations for an example model with 

high velocity contrast (3.3 for S waves) clearly point to the detectability of these waves 

around fS0 in both the SPAC coefficient and the f-k power spectrum. These results 

provide additional insight into the composition of the ambient noise around the S wave 

resonance frequencies. 

 

Another important aspect of this issue lies in the sensitivity of the particle trajectory and 

amplitude of motion around fS0 to the main S wave velocity contrasts in the 

underground structure. Even though it is a controversial topic, the interpretation of these 

trajectories under ambient noise illumination is the basis of several tools for estimation 

of local amplifications of seismic signals and methods for passive seismic exploration 

(e.g., Nakamura [7], Lachet and Bard [32], García-Jerez et al. [33],[34], Fäh et al. [35], 

Arai and Tokimatsu [36], Parolai et al. [37], Herak [38], Sánchez-Sesma et al. [39], 

Tuan et al. [21]). Though further research is required, our results point to a major role of 

the leaky modes and guided waves in the in-plane particle trajectories in that frequency 

band. 

 

Finally, it is also worth noting that the pole in the P-SV integrand associated with these 

waves may lead to instability in numerical calculations of the Green’s functions at 

frequencies around p  whenever the integration contour shown in Fig. 2 (or that in 

Wang and Herrmann [12]) is used. Rerouting the branch-cuts when the Green’s function 

is calculated at frequencies around p  would be the preferred procedure. On the other 

hand, numerical artifices which attempt to remove the poles from the real k by adding a 

tunable imaginary perturbation to the frequency (Bouchon and Aki [11], Herrmann and 

Ammon [40]) also provide suitable approximate solutions. 
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Appendix A 

 

In this Appendix we study the consequences of the simultaneous fulfillment of the 

equations K = 0 and L = 0 at a particular combination ),( pp k . 

 

The P-SV Green functions can be written in terms of elements of the matrix J, defined 

as the product AE
1

N , where A represents the product of layer matrices and 1

NE  depends 

on the halfspace properties (apart from k and c). Their expressions can be found in Ben-

Menahem and Singh [13], Eqs. 3.184, 3.185 and 3.190c. For NN c   , elements of J 

are real (R) or imaginary (I) following: 
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Matrix J provides a link between the upgoing/downgoing P and S wave amplitudes at 

the halfspace (or their inhomogeneous counterparts) and the displacement-stress vector 

at surface. If neither upgoing homogeneous waves nor unbounded inhomogeneous 

waves are permitted at the halfspace, this relationship is written 

  

   TT
cwcuSSPP 00J ,   (A2) 

 

where P and S are proportional to the respective amplitudes of the allowed waves at 

halfspace (downgoing waves or exponentially decaying amplitudes). 

 

Harkrider’s expressions of the Green’s functions are written in terms of the quantities 

M, N, K, L, R, S, G, H which are proportional to differences between pairs of elements 

of J, e.g., 
22

1222 /)( cJJK
NN   and 

22

2111 /)( cJJL
NN  , being mutually 

linked by the relationship R N  S L = G M  H K (Harkrider [16], Eqs. 68 – 69). In the 

case considered here (K = L = 0), this general property simply reads R N = G M, or 

equivalently,      4232231341312414 JJJJJJJJ  . Considering now (A1), both 

sides of this latter expression will be complex quantities, so that, it can be separated in 

simultaneous conditions for the real and imaginary parts:  

 

    0231332241431  JJJJJJ      (A3a) 

 

    0231342241441  JJJJJJ .    (A3b)  

 

The trivial solution of this system,     023132414  JJJJ  along with K = L = 0 

implies that J is singular ( jj JJ 21   for any j). Disregarding that case, the compatibility 

between Eqs. (A3) would require: 

 



 

 

41324231 JJJJ   .     (A4) 

 

This property, together with the third and fourth equations in (A2), yields S = 0 and 

 

 

  41423132 /// JJJJNMwu 

 

 ,         (A5) 

 

implying existence of pure P- type inhomogeneous waves in the halfspace and elliptic 

particle motion at surface, respectively.  

 

The excitation of this vibration mode by a surface point load can be evaluated as the 

residue contribution of integrals (1-4) at ),( pp k . Using the Harkrider’s medium 

response 
pp kA ,  defined as i2  times the residue of Rzz Fkg /)0,,(  at ),( pp k , where 

)0,,( kgzz   correspond to   )2/( GNLH   and 
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and using that K, L tend to zero as pkk   we can obtain: 
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Appendix B 

 

A way for resolution of the system of equations K(k, c) = 0, L(k, c) = 0 for a single layer 

over a halfspace is proposed below. The expressions of K and L for N = 2 are (Eq. 3.200 

in Ben-Menahem and Singh [13]): 
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where A represents the layer matrix. Replacing the expressions of the elements of A 

(Eq. 3.185 in Ben-Menahem and Singh [13], we can rewrite these equations, 

respectively, in the form: 

 

0cosDsinCcosBsinA KKKK  QQPP     (B3) 

 

0cosDsinCcosBsinA LLLL  QQPP
   (B4) 



 

 

 

with

 

hkQ
1

  and hkP
1

 . Hereafter, KA , KB , KC , KD , LA , LB , LC  and LD  

are considered as functions of c (not depending on k). Writing now Psin  and Pcos  as 

functions of the half-angle 2/PPh  , and after a multiplication by hP2tan1 , it yields 

 

0)sinCcosDB(tanA2tan)sinCcosDB( KKKK

2

KKK  QQPPQQ hh   (B5) 
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2

LLL  QQPPQQ hh (B6) 

 

At this point, hPtan  can be worked out for both the equations: 
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and equaling their expressions we obtain 
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Removing square roots and after some algebra, an expression which depends on Q  via 

Q2cos , Q2sin  and QQcossin  is obtained. Using the identities

)tan1/(1cos 22 QQ  , )tan1/(tansin 222 QQQ  , )tan1/(tancossin 2 QQQQ  , 

(B9) can be rewritten as a quadratic equation in Qtan : 
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where the depending of c coefficients are: 
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Thus, two solutions are obtained for Qtan  corresponding to the sign of the root (say 

TQsg ) and, for each one, a set of solutions for the wavenumber 

)/()(
1, hrnQk

TQTQ sgnsg  , with 
TQsgQ0 . This solutions fulfill (B9) for unknown 

signs Ksg , Lsg . Finally, Ksg  or Lsg  are determined and nsgTQ
k , (c) is replaced in (B7) or 

(B8) to search for numerical solutions of c for each couple (n , TQsg ). 

 

Appendix C 

 

A brief derivation of the conventional f-k power estimator FKCVP   under DFA for a dense 

circular array is listed below. 

 

The definition of FKCVP  for any array consisting of NS stations at jr


,  j = 0, 1,…, NS1 

is:  
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.     (C1) 

 

Then, assuming that the stations are evenly located on a circumference with radius r, we 

can define the azimuth of the station at jr


 as SN/2 jj  . For a diffuse wavefield the 

relation )(Im jlzzjl rrGcteC


  holds. Thus, defining (k, k ) as the modulus and 

azimuth of the investigated wavenumber k


 

and using elemental trigonometry, (C1) 

yields: 
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.  (C2) 

 

After some elementary manipulations and summing once for each pair of sensor, 

equation (C2) reads 
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,       (C3) 

 

which, after taking the mean value over the observation azimuth k  yields 
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with 
k

FKCVP


 depending on k. Assuming, for simplicity, that NS is odd, every 

interstation distance |]2/)sin[(2| ljr    will appear NS times in the sum. All these 

possible distances can be generated fixing index l to 0, and letting j run up to (NS1)/2: 
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 ,  (C5) 

 

which corresponds to Eq. (11). If the number of sensors were very large (NS tending to 

infinity), (C5) can be immediately written as  
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At this limit, )(kPFKCV


 become independent of the direction of k


 so that Eq. (C6) could 

be derived without performing any previous average over k . 

 


