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Simulation of an Irregular Free Surface with a Displacement

Finite-Difference Scheme

by J. A. Pérez-Ruiz, F. Luzón, and A. Garcı́a-Jerez

Abstract In this article, we present a method to simulate wave propagation in a
2D medium with an irregular free surface by using a finite-difference method. The
free-surface conditions are developed through an explicit scheme in displacement.
In our technique, a conventional grid is used to define the zone where there is material
and the zone where there is not material. In this method a fictitious line of material
above the free surface is used to compute the displacement at the free surface. A
classification of the points that shape the fictitious line is presented. Then displace-
ments in the internal points of the material are computed together with the displace-
ments at the points of the free surface, and subsequently the displacement at the
points of the fictitious line are updated applying the boundary conditions by using
an explicit finite-difference scheme. We present some results of the application of
this technique by means of the simulation of the seismic response of a canyon and
a mountain using an explosive source and a vertical force, respectively. We compared
the results with the synthetics calculated by the indirect boundary element method
(IBEM). First, we tested the method simulating the wave propagation at a half-space
with a planar surface. The comparison with the results of the IBEM gave us confi-
dence to deal with other models with topography features. These topographical mod-
els provided results that were in very good agreement with the results obtained by
the IBEM.

Introduction

Irregular topography can affect earthquake displace-
ment (Bard, 1994; Sánchez-Sesma, 1996). Spatial variability
of amplification can be observed together with characteristic
polarization patterns. The simulation of this kind of effect at
irregular topographies and its understanding is therefore of
interest for seismology. This problem is taken into account
using the traction-free boundary conditions, but this task has
an inherent difficulty when techniques such as the finite-
difference method are used, (Moczo et al., 2004).

The use of techniques such as the boundary element
(Sánchez-Sesma and Luzón, 1995) or the discrete wavenum-
ber method (Aki and Larner, 1970) have been popular for
relatively simple geometry and geological conditions. On the
other hand, finite-element (Bielack et al., 2003) and finite-
difference (Alterman and Karal, 1968; Graves, 1996) meth-
ods are better suited for more realistic models with highly
heterogeneous materials. Alterman and Karal (1968) solved
the problem of a layer on a half-space directly with the equa-
tions of the boundary conditions (both stresses and displace-
ments must be continuous at the interface, and stresses must
vanish on the free surface). These conditions generated an
implicit scheme. They used a nonstaggered displacement
scheme and developed their algorithm for homogeneous me-

dia. Boore (1972) and Kelly et al. (1976) improved the al-
gorithm for heterogeneous media. Boore introduced the so-
called vacuum formalism for the 2D SH problem, in which
the Lamé parameters and density are set to zero to simulate
the free-surface boundary.

Munasinghe and Farnell (1973) solved the problem of
Rayleigh wave scattering at vertical discontinuities. They
used an extra line of points called pseudonodes to compute
the behavior of the free surface. Kelly et al. (1976) intro-
duced the arithmetic averages of the parameters in the
scheme; this was called “heterogeneous formulation.” Fur-
thermore these authors used a fictitious line above the free
surface to compute the displacement at the horizontal free
surface. Fuyuki and Matsumoto (1980) solved the problem
of Rayleigh wave scattering at a trench; they used an extra
line of pseudonodes although with a procedure different
from the one followed by Munasinghe and Farnell (1973).
Ilan (1977) and Rong-Song et al. (1988) used the finite-
difference (FD) method to simulate P-SV wave propagation
in an elastic medium with a polygonal free surface. These
schemes required a nonuniform grid, introducing some com-
plexity and decreasing the accuracy. Levander (1988) de-
veloped the stress-imaging technique, in which it was nec-



essary to know the values of the stress-tensor components
above the free surface. He developed a velocity-stress,
staggered-grid scheme with a fourth order approximation.
Sochacki et al. (1991) performed a modification of the het-
erogeneous formulation of Kelly et al. (1976), introducing
some differences in his finite-difference schemes because
they explicitly accounted for the boundary conditions and
more emphasis was placed on the time derivative. Zahradnik
et al. (1994), in contrast to Sochacki, integrated the rigidity
parameter and made use of the weighted arithmetic averages
to deal the interface boundary condition. They introduced,
the vacuum formalism for 2D P-SV problem, where the pa-
rameters above the free surface are placed to zero, and the
same scheme of the internal points of model was used to
compute the displacements at the free surface. Zahradnı́k and
Priolo (1995) presented an important work in which they
justified the heterogeneous formulation of Boore (1972) and
Kelly et al. (1976). They used the vacuum formalism to deal
with the free surface and gave a theoretical justification using
the arithmetic averages to reproduce the behavior of the in-
terface boundary conditions. Later, Graves (1996) employed
the same stress-imaging technique as Levander (1988), with
a 3D problem. Graves used the stress-imaging technique as
a zero-stress formulation and compared it with the vacuum
formulation. He observed that the zero-stress formulation
obtained better results when compared to the frequency-
wavenumber technique. Ohminato and Chouet (1997) dis-
cretized the 3D topography in a staircase by stacking unit
material cells in a staggered-grid scheme. The shear stresses
are distributed on the 12 edges of the unit material cell so
that only shear stresses appear on the free surface and normal
stresses always remain embedded within the solid region.
Oprsal and Zahradnı́k (1999) introduced a new scheme that
uses irregular grids to solve the problem of wave propaga-
tion. They used geometric averages to weight the parameters
of the medium and when the interface between two different
media did not agree with a grid point’s line. Hayashi et al.
(2001) used a mixed technique that combined the general-
ized image method and the vacuum formalism in a visco-
elastic velocity-stress, staggered-grid scheme. This tech-
nique had two problems, the proposed free-surface condition
required at least 30 grid points per wavelength, and the dis-
continuous grid computation was eventually unstable. Ruud
and Hestholm (2001) used a curved grid in the (x, z) system
to model the topography, changing the system of coordinates
with a displacement-stress scheme. Kristek et al. (2002) used
a different technique based on the adjusted FD approxima-
tions (AFDA). This technique is different from the stress-
imaging technique, and no virtual-displacement/particle-
velocity and stress-tensor values above the free surface were
used. Moczo et al. (2004) used this technique to calculate
ground motion in models with lateral material discontinuities
and planar free surface. Both, Kristek et al. (2002) and
Moczo et al. (2004), used fourth-order staggered-grid,
stress-velocity FD schemes. Finally, Min et al. (2004)
worked in the frequency domain with a displacement scheme

and proposed the use of a cell-based grid set where material
properties are defined within cells rather than at nodal points.
The properties in cells are calculated by arithmetic averages
of adjacent points, and the free surface is computed assum-
ing that material properties above the free surface are zero.

This article presents a method to compute the displace-
ment at a free surface with irregular geometry. This is a
simple implementation of stress-free boundary conditions
for topographies of arbitrary shape with a 2D displacement
FD scheme. Our method is flexible and allows the study of
complex topographies. We tested the validity of this method
by comparing our results with those computed with the in-
direct boundary element method (IBEM) (Sánchez-Sesma
and Campillo, 1993).

Equations of Motion and Free-Surface Conditions

In our scheme x and z are the horizontal and vertical
rectangular coordinates in a 2D medium. The z axis is posi-
tive downward, and the x axis is positive to the right. Two
coupled, second-order, partial differential equations can be
used to describe the motion of P waves and vertically po-
larized shear SV waves in a medium. These two equations
of motion are

2 2 2� u � u � u
q � (k � 2l) � l� 2� � 2� � 2��t �x �z

2 2� w � w
� k � l (1)� � � ��x�z �z�z

2 2 2� w � w � w
q � l � (k � 2l)� 2 � � 2� � 2 ��t �x �z

2 2� u � u
� l � k (2)� � � ��x�z �z�z

where q is the density, u and w are the horizontal and vertical
displacement, respectively, k and l are the Lamé parameters,
and t is time.

We use a regular, rectangular grid with steps Dx and Dz.
Following the diagram of Figure 1, we give some examples
of the FD approximations for nonmixed (equation 3) and
mixed (equation 6) derivatives (Pérez-Ruiz and Luzón,
2004). Here the subscripts i, j correspond to the spatial po-
sition (j to x and i to z), and subscript k gives the time step,

� �f 1
p � 2 .� ��x �x Dx(j � 1) � Dx( j )i, j

f(i, j � 1, k) � f(i, j, k)
p (3)r� Dx( j )

f(i, j, k) � f(i, j � 1, k)
� pl �Dx( j � 1)
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Figure 1. Example of FD grids cell with positions
of the wave-field displacement and effective media
parameters. In this figure the criterion followed by
subscripts is observed. The media parameters are
computed as the value of the geometric average of
adjacent points of the grid.

with

p � p(i, j � 1) • p(i, j ) (4)�r

p � p(i, j ) • p(i, j � 1) (5)�l

and mixed derivative,

� �f 1 1
p � .� ��z �x 2 Dz(i � 1) � Dz(i )i, j

1
p ( f(i, j � 1,k) � f(i � 1, j � 1,k) � f(i, j, k) � f(i � 1, j, k)) �dr Dx( j )

1
� p ( f(i, j, k) � f(i � 1, j, k) � f(i, j � 1,k) � f(i � 1, j � 1,k)) �dl Dx( j � 1)

• (6)
1

� p ( f(i � 1, j � 1,k) � f(i, j � 1,k) � f(i � 1, j, k) � f(i, j, k)) �ur Dx( j )� �
1

� p ( f(i � 1, j, k) � f(i, j, k) � f(i � 1, j � 1,k) � f(i, j � 1,k))ul Dx( j � 1)

with

4p � p(i, j � 1) •p(i � 1, j � 1) •p(i, j ) •p(i � 1, j ) (7)�dr

4p � p(i, j ) •p(i � 1, j ) •p(i, j � 1) •p(i � 1, j � 1) (8)�dl

4p � p(i � 1, j � 1) •p(i, j � 1) •p(i � 1, j ) •p(i, j ) (9)�ur

4p � p(i � 1, j ) •p(i, j ) •p(i � 1, j � 1) •p(i, j � 1) (10)�ul

where p is an elastic parameter of the medium and f is the
vertical or horizontal component of the displacement. The
subscripts of parameter p refer to down (d), up (u), left (l),
and right (r); they indicate the movement over the grid
around the (i, j)-point (see Fig. 1). In this respect, we use
the idea of Min et al. (2004). We use a cell-based grid but
apply the free-surface condition directly. We use geometric
averages for the elastic parameters of the medium. This al-
lows computing correct values of the displacement on the
interface between two different media; it is not necessary to
employ the continuity boundary conditions directly.

Also the stability of our FD approximation requires the
following condition (Marfurt, 1984);

h
D t � , (11)

2 2� � b�

where h is the step of the grid, Dt is the time step, and � and
b are the maximum velocities of P and S waves in the media.
The nondispersion criterion used is given by

bminh � , (12)min 10 • fmax

where bmin is the minimum velocity of S waves and fmax

defines the limit of the range of frequencies that can be sim-
ulated in the model. If the source is modeled by a Ricker
wavelet this frequency can be calculated as three times the
frequency of the pulse. As shown by Moczo et al. (2000), a
minimum of 10 points per wavelength are necessary to min-
imize the effects of grid dispersion and to achieve good ac-
curacy.
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The most obvious way to implement a free-surface condition
is to constrain the solution by applying equations directly at
the free surface. The vanishing of normal tractions on the
free-surface boundary is imposed by the equation Tj ( , )r ru n
� rijni � 0 at the free surface z � 0, with n unit vector
normal to the surface. In this problem four general cases
have been considered:

1. Horizontal free surface:

�u �w
r � k � (k � 2l) � 0 (13)zz �x �z

�w �u
r � l � l � 0 (14)zx �x �z

2. Vertical free surface:

�u �w
r � (k � 2l) � k � 0 (15)xx �x �z

�u �w
r � l � l � 0 (16)xz �z �x

3. Exterior corner of free surface:

�u
r � r � (k � 2l)xx xz �x

�w �u �w
� k � l � l � 0 (17)

�z �z �x

�u �w
�r � r � �k � (k � 2l)zz zx �x �z

�w �u
� l � l � 0 (18)

�x �z

4. Interior corner of free surface:

�u
r � r � (k � 2l)xx xz �x

�w �u �w
� k � l � l � 0 (19)

�z �z �x

�u
�r � r � �k � (k � 2l)zz zx �x

�w �w �u
� l � l � 0 (20)

�z �x �z

These are the general equations that govern the behavior
of free surface, which have to be approximated using finite
differences. These expressions are approximated by diverse
FD schemes according to the kind of point on the free sur-
face.

We have checked that the geometric average provides
a better behavior than the arithmetic average in terms of
major stability and convergence. When the model is hetero-
geneous we achieve long times with a very stable behavior
of the scheme. This scheme is conditionally stable according
to equation (11), but to solve the free-surface problem it is
necessary to combine two different schemes: the general
scheme for the internal points and the specific scheme for
the points at the fictitious line. This stress condition for the
horizontal free surface is divided in two conditions, the tan-
gential and the normal stresses. Kelly et al. (1976) employed
zero-stress condition too, but in the tangential stress condi-
tion (equation 14) they simplified the rigidity modulus l
leaving only the spatial derivatives. Following these authors,
we made some computations using arithmetic averages in
the general scheme and in the parameters that appear at the
normal stress condition (equation 13). We observed that the
method was stable but its results and those obtained with
the IBEM were not in good agreement. It was logical to think
that if arithmetic averages were employed in the elastic pa-
rameters of both conditions (equations 13 and 14) the
method could be still more accurate. With this idea some
tests with heterogeneous basins were realized and the
scheme became unstable. At last, following the idea of
Oprsal and Zahradnik (1999), we achieved the stability and
convergence of the method using geometric averages at the
schemes for the internal points and for the points of the
fictitious line.

Implementation

To implement our FD scheme to an arbitrary topogra-
phy, we first define a matrix with ones [1], zeros [0] and the
nonreflecting boundaries [B] as shown in Figure 2. In this
matrix the ones represent the material, whereas the zeros
represent the zone where there is no material.

In our scheme we use fictitious material on the line
above the free surface. The grid line above the free surface
is necessary because of the expansion by FD of equations
(13) to (20). To apply the free-boundary conditions it is nec-
essary to define 12 types of points on the fictitious line. We
classified these points as shown in Table 1. The number that
identified each kind of point of the fictitious line indicates
the order of update. Various examples are shown in Figure
3a and b. Although the boundary condition is the same on
the entire free surface, each kind of point requires a different
equation to be used.

To deal with an explicit FD scheme, the computation
has to be carried out in a specific order. First the interior
points [1] are computed with the approximation by finite
differences of equations (1) and (2). Then the interior corners
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Figure 2. Matrix with ones and zeros that define the model. In this matrix only,
there are ones, zeros, and the points of nonreflecting boundaries (B).

of the fictitious line [2], [3], [4], and [5] are computed, after
that the horizontal and vertical points of fictitious line [6],
[7], [8], and [9], and then the exterior corners [10], [11],
[12], and [13]. Finally, the nonreflecting boundaries are
computed. In this way the displacements at the free surface
can be obtained at the next time step. This procedure is com-
parable to those followed by Kelly et al. (1976), Munasinghe
and Farnell (1973), and Fuyuki and Matsumoto (1980). The
principal difference from these works is that the method here
presented is a general procedure to solve free surfaces with
arbitrary forms. In the work of Kelly et al. (1976), only
horizontal free surface was treated (points labeled as [6]
here) using the fictitious line concept. An important differ-
ence between our work and the works of Munasinghe and
Farnell (1973) and Fuyuki and Matsumoto (1980), who used
the pseudonode concept introduced by Peaceman (1966), is
in the process of computing the corners. In our treatment,
the displacements at all the points of the fictitious line, in-
cluding the corners, are computed by their corresponding
scheme, and all internal points labeled as [1] are calculated
by a same general numerical scheme, including the displace-
ments at the free surface. Nevertheless, in the method by
Fuyuki and Matsumoto (1980) the displacements at those
pseudonodes that were equivalent to the exterior corners of
our fictitious line were not computed. Therefore different
schemes were used to update the displacements at some in-
ternal points of the model; for example, the exterior corners
of the free surface. Equally, the displacements at the pseudo-
nodes that were equivalent to the interior corners of our fic-

titious line were not calculated either and two new inter-
mediate pseudonodes at the grid were necessary to compute
the adjacent internal points, which were updated with spe-
cific numerical schemes. Their procedure was similar to that
developed by Munasinghe and Farnell (1973) although with
some slight differences with regard to the schemes used. In
these works, the points labeled here as [4], [5], [7], [12], and
[13] were not treated. These points allow us to study cavities
as shown in Figure 3b.

Along the fictitious line the media parameters have the
same values as in the medium. This fact is easy to understand
for points [6], [7], [8], and [9] on the horizontal and vertical
fictitious line, likewise for the exterior corners. However,
when the union of two different materials is just placed in
the adjacent points of an interior corner (see Fig. 4a) a rea-
sonable doubt could appear about which material value
might be used. As it is shown later any of both material
values could be used. To study this particular situation, an
example of this problem is presented. In Figure 4a, a model
with two materials joined, forming a corner, is shown. Ma-
terial A has an S-wave velocity bA � 1100 m/sec and a P-
wave velocity �A � 2000 m/sec. Material B has a S wave
velocity bB � 570 m/sec and a P-wave velocity �B � 1000
m/sec. Both materials have a density q � 2000 kg/m3. Three
receivers are placed on the free surface of this model. A
receiver is just situated on the interior corner, and the other
receivers are placed above the vertical and horizontal free
surface with a distance of 200 m from the interior corner.
This model is excited by an explosive source. The time sig-
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Table 1
Classification of the Points of the Fictitious Line and Their Stress Conditions

nal is a Ricker wavelet with tp � 0.75 sec, and ts � 1 sec.
This source is located 2 km toward the right and 1 km down-
ward with regard to the interior corner. A time step Dt �
0.006 sec and a grid spacing Dx�Dz � 20 m were used. In
Figure 4b, the synthetics recorded in the three receivers are
presented. In this figure three results are shown: the solid
line depicts the results using the fictitious line A, where the
internal corner has the values of the material A; the crosses
represent the results with the fictitious line B, where the
interior corner has the values of the material B; and finally,
the asterisks depict the solution considering the vacuum for-

malism in a FD scheme. The three results are in good agree-
ment. This fact indicates that the values attributed to the
interior corner do not concern the final result significantly.
The reason for this agreement can owe to the employment
of a cell-based grid scheme and the use of geometric aver-
ages.

As is shown in Table 1, each point of the free surface
has to satisfy a particular condition with the appropriate
components of stress. For example in the horizontal free
surface with material underneath, the type of point labeled
as [6], we can proceed in the following way:
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Figure 3. Matrixes where the classification of different points is observed. The
points of this matrix are classified according to the shape of one free surface and we
introduce the fictitious line above the real free surface. The interior points are labeled
as 1 and nonreflecting boundaries are labeled as B. (a) The topography of an arbitrary
mountain. (b) The topography of a cavity.
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Figure 4. (a) Model to study the effect of an in-
ternal corner. The union of the two materials agrees
with the internal corner. Three receivers are placed
above the free surface. A detail of the fictitious line
is shown. The crossed out cell depicts the internal
corner at the fictitious line. This cell can support the
values of material A or material B. This source is
located 2 km toward the right and 1 km downward
regarding the internal corner. (b) Vertical displace-
ments W recorded in the three receivers. The solid
line depicts the solution with fictitious line A, the
pluses with the fictitious line B, and the asterisks with
the vacuum formalism. The time signal is a Ricker
wavelet with tp � 0. 75 sec and ts � 1 sec.

r � r � 0 (21)zz zx

�u �w
r � k � (k � 2l) � 0 (22)zz �x �z

�w �u
r � l � l � 0 (23)zx �x �z

Developing these equations by FD schemes we get,

u(i, j � 1,k) � u(i, j � 1,k)
k �cx� �2Dx

w(i, j, k) � w(i � 1, j, k)
(k � 2l) � 0 (24)cz � �Dz

w(i, j � 1,k) � w(i, j � 1,k)
l �cx� �2Dx

u(i, j, k) � u(i � 1, j, k)
l � 0 (25)cz � �Dz

and working out the value of the displacements at the point
(i�l, j, k), the final equations for a horizontal free surface
with material underneath are:

Dz kxcw(i � 1, j, k) � w(i, j, k) � � � � �2Dx (k � 2l)cz

(u(i, j � 1,k) � u(i, j � 1,k)) (26)

Dz lxcu(i � 1, j, k) � u(i, j, k) � � � � �2Dx (lcz

(w(i, j � 1,k) � w(i, j � 1,k)) (27)

where the Lamé parameters are defined as:

k (i, j ) � k(i, j � 1) • k(i, j � 1) (28)�cx

(k � 2l) (i, j )cx

� (k � 2l) (i, j ) • (k � 2l) (i � 1, j ) (29)�

l (i, j ) � l(i, j � 1) • l(i, j � 1) (30)�cx

l (i, j ) � l(i, j ) • l(i � 1, j) (31)�cz

From equation (26) we can calculate w(i�l, j, k), and from
equation (27) we can compute u(i�l, j, k) (see Fig. 5). These
are the displacements on the fictitious line, that will be used
to compute the displacements on the free surface with the
approximation by FD of equations (1) and (2); this is the
approximation for interior points of the model. Following
this procedure we can get the formula of displacement at
each kind of point of the fictitious line.
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Figure 5. The point 6 of the fictitious line requires
the three indicated points 1 to be actualized. Later, it
will be possible to compute the displacements in the
dark-gray point 1 of the free surface with displace-
ments at points of the fictitious line, and internal
points 1.

It is attractive to use a scheme that is totally explicit.
This would avoid solving equation systems, and the proce-
dure would be totally iterative, but there are some cases in
which the discretization could introduce an implicit scheme,
because of the order with which computations should be
made. For example, when the internal points [1] and the
entire interior corner are updated we might choose from two
cases, to compute the displacement at the points [6] of the
horizontal fictitious line first, or to compute the displace-
ments at the points [8] of the vertical fictitious line first. If
the points [6] are computed first, when this point [6] is an
extreme left point equations (26) and (27) require the dis-

placements at a point [8] as seen in Figure 6a. Whereas if
the extreme top point [8] is computed first its equation will
need the adjacent point [6] (see Fig. 6b). That is, displace-
ments are always needed at a point that has not been updated.
Following with this example, we can observe that the dis-
placements in the equations of a point [10]

l(i, j )
u(i, j, k) � � �2(k � 2l) (i, j )

(u(i � 1, j, k) � u(i, j � 1,k)

� w(i � 1, j, k) � w(i, j � 1,k))
k(i, j ) � l(i, j )

� u(i, j � 1,k) (32)� �(k � 2l) (i, j )

l(i, j )
w(i, j, k) � � �2(k � 2l) (i, j )

(w(i � 1, j, k) � w(i, j � 1,k)

� u(i � 1, j, k) � u(i, j � 1,k))
k(i, j ) � l(i, j )

� w(i, j � 1,k), (33)� �(k � 2l) (i, j )

require the displacements of the points [6] and [8] (see
Fig. 6c). To solve this problem one can concentrate on the
extreme point [6]. In this example we give attention to the

Figure 6. (a) Scheme to compute the dis-
placement at the point 6 of the horizontal fic-
titious line; we can see that the displacement
at the indicated adjacent point 8 still is not up-
dated. (b) Scheme to compute the displacement
at the point 8 of the vertical fictitious line; we
can see that the displacement at the indicated
adjacent point 6 still is not updated. (c) Scheme
to compute the displacements at the point 10,
it is necessary to know the displacements in
adjacent points 6 and 8, but these displace-
ments still have not been updated.
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left extreme point [6], and other FD schemes can be used to
approximate the displacement at this point. Instead of using
a centered FD scheme to approximate the horizontal deriv-
ative, it is possible to use a forward FD scheme at this point,
as follows:

2Dz kcxw(i�1, j, k) � w(i�1, j, k)�� �� �12Dx (k�2l)cz

(�u(i, j�2, k)�4u(i, j�1,k)�3u(i, j, k)) (34)

2Dz lcxu(i�1, j, k) � u(i�1, j, k) � � � � �12Dx (lcz

(�w(i, j�2, k) � 4w(i, j�1,k) � 3w(i, j, k)). (35)

This permits the controversial horizontal point [6] of the
fictitious line to be updated. With these points updated the
code can compute the rest of the points of the fictitious line
in the order established by a totally explicit way.

The points that are computed with this scheme are
points of type [6] and [7]. In particular, those points placed
nearest the exterior corners. With this scheme internal points
[1] will be used to update these extreme points (see Fig. 7a).

The other way to solve this problem is to reclassify
some points of the grid. In the example that occupies us it

would be necessary to transform these points as shown in
Fig. 7b. The exterior corner [10] passes to be an exterior
point [0]. Both extreme points [6] and [8] are converted to
exterior corners [10] and an internal point of the model [1]
passes to be an interior corner [2]. In this way all these points
can be computed by updated points following the same order
as previously indicated. This approximation can be justified
because the order of magnitude of the spatial step used to
discretize the model is much smaller than the dimensions of
the complete grid and of the wavelengths of the waves that
propagate in the model. Both ways to compute the displace-
ments at the points [6] and [8], with forward or centered
difference schemes, gave us identical results for irregular
topographies. With any of these techniques and following
the right order as shown here, it is possible to compute the
displacement at any point of the fictitious line by a totally
explicit way.

Although a method to compute the displacements at the
free surface of 2D models has been presented, this scheme
can also be easily extrapolated to a 3D space. To achieve
this target, first it is necessary to classify the hypermatrix
that will represent the model. As in the 2D case, this matrix
will be full with zeros and ones, and a fictitious surface will
be necessary to compute the displacements at the free surface
of the model. Two basic differences exist between the 3D
and 2D formulation: the expressions of stress are different,

Figure 7. Two ways to solve the implicit
problem at the fictitious line. (a) It is possible
to change the centered FD scheme for a forward
FD scheme in the conflictive point 6. (b) Re-
classification of the points at the grid. Here an
example is shown with the exterior corner
point 10, changing some points in our classi-
fication to achieve an explicit scheme.
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because they contain a third coordinate now, and a major
number of points at the fictitious surface will be necessary
categorize. In this way a whole of 46 different points are
necessary.

In the 2D model there are four corners and two lineal
basic elements. These elements can have material in a side
or in the other one, generating a set of 12 points, that is
(4 � 2) � 2 � 12 (see Table 1). We can generalize from

these elements to obtain the different kinds of points in 3D
In Table 2, we present, as are example, a corner and a lineal
element in 2D-(x, z), which are extended to the 3D-(x, y, z)
case. It is possible observe that each 2D corner evolves to
two 3D corners and one 3D edge. On the other hand, each
2D-lineal element evolves to four new 3D edges and one
flat side. The rest of the 2D-elements can be treated as an
analogous form. Without a lot of effort we can find, there-

Table 2
Two Examples of the Procedure to Obtain the Points of the Classification of the Fictitious Surface in a 3D Model

Figure 8. Half-space with planar free surface. Fifty-one receivers cover 4 km above
the free surface, and they are separated by 80 m. The P-wave velocity is 1 km/sec and
the Poisson ratio is 0.25. The source is localized to 1 km deep.
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fore, that (4 � 2) � 2 � 16 corners, (4 � 1 � 2 � 4) �
2 � 24 edges, and (2 � 1 � 1) � 2 � 6 flat sides can be
present at the fictitious surface of a 3D model. In these com-
putations the numbers inside the parentheses show the num-
ber of basic elements, and the multiplier 2 indicates the pos-
sibility to have material in a side or in the other one of the
element. Finally each one of these elements must be treated
by its corresponding stress condition.

Test Examples

To test the validity of our approach, our results are com-
pared with those obtained using the IBEM (Sánchez-Sesma
and Campillo, 1993). First, a homogeneous model with a
horizontal and planar free surface is presented. This model
has a P-wave velocity of 1 km/sec and a Poisson coefficient
of 0.25. It was excited with a point force directed upward,

modeled by a Ricker wavelet with tp � 1 sec, and ts � 2
sec. This force is located at a depth of 1 km (see Fig. 8).
The vertical (w) and horizontal (u) displacements were com-
puted at 51 receivers placed on the free surface, spaced at
80 m. The central receiver is located directly above applied
force. A time step Dt � 0.012 sec and a grid spacing of Dx
� Dz � 20 m were used. In Figure 9 the vertical (w) and
horizontal (u) displacements are shown with a solid line. The
solution computed using IBEM has been superposed by using
a dashed line. Both solutions are in very good agreement.

Next we consider a triangular mountain centered in the
origin, with dipping angles of 45� and a height of 1 km (see
Fig. 10). The source considered is a vertical force embedded
in the half-space and directed upward, located at x � 0 km
and z � 1.5 km. The time signal is a Ricker wavelet with
tp � 1 sec, and ts � 2 sec. The half-space has a P-wave
velocity of 1 km/sec and a Poisson coefficient of 0.25. No
attenuation was included. In Figure 11, horizontal (u) and
vertical (w) displacement at 4 receivers located on the free
surface, between x � � 1920 m and x � 1920 m, and
separated by 80 m are presented. This solution is calculated
using a time step Dt � 0.006 sec, and a grid spacing Dx �
Dz � 10 m. The results computed using the IBEM are shown
in the same figure for comparison. Both computations are in
very good agreement. In this example the P and SV waves
produce creeping waves with great amplitude. Part of their
energy is emitted as Rayleigh waves when they arrive at

Figure 9. u and w components of the displace-
ments at 51 receivers in the model of the homoge-
neous half-space produced by a vertical force. The
results computed with the FD method are presented
with solid lines, whereas the results from the IBEM
are with dashed lines.

Figure 10. Model of a triangular mountain with
dipping angles of 45� and a height of 1 km. In this
case the half-space has a P-wave velocity of 1 km/
sec and a Poisson coefficient of 0.25. The source is
localized in x � 0 km and z � 1.5 km. It is an upward
vertical force modeled by a Ricker wavelet with tp �
1 sec and ts � 2 sec. Forty-nine receivers are situated
at the free surface, between x � �1920 m and x �
1920 m, and separated by a horizontal distance of
80 m.

Simulation of an Irregular Free Surface with a Displacement Finite-Difference Scheme 2227



horizontal surface. Also, the P reflected from one wall to the
other can be observed in the horizontal component. In Figure
12 details of the displacements at receivers 29, 38, and 44
are presented. These receivers have been chosen because
they include the three different zones of the mountain. Re-
ceiver 29 is placed approximately on the middle of the right
hillside of the mountain, receiver 44 is located above the
half of the flat free surface, and receiver 38 is placed at the
zone where the flat and hillside are joined. We can observe
that numerical solution obtained by the FD method (solid
line) at the three positions is in good agreement with the
IBEM solution (dashed line).

As a final test, a semielliptical cavity with a major semi-
axis of 1 km and a minor semiaxis of 0.5 km is studied (see
Fig. 13). The properties of the half-space are the same as in
the preceding case. The source is located in x � 0 km and
z � 2 km, and it is modeled by a Ricker wavelet with tp �
1 sec, and ts � 2 sec. In this case an explosion is considered.
The receivers are located on the free surface separated by a

horizontal distance of 80 m, and the same time step and grid
spacing as before are used. Figure 14 presents the results
together with those computed using the IBEM. The incidence
of the P waves producing creeping waves as shown by
Ohminato and Chouet (1997) and the appearance of Ray-
leigh waves that propagate at the horizontal free-surface sec-
tion are observed. The displacement shows important am-
plifications in the vertical component at the central stations
of the semielliptical canyon and in the corners.

Conclusion

In this work, we have developed a procedure to deal
with an irregular free surface in a 2D FD scheme for P-SV
waves. We use a regular scheme of FD in a displacement
formulation. In this article the treatment of absorbing bound-
ary conditions and a rigorous study of stability analysis and
of numerical dispersion are omitted, because these topics

Figure 11. Synthetic seismograms recorded on the free surface of a triangular
mountain, produced by a vertical force modeled by a Ricker source function. U, hor-
izontal component; W, vertical component.
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have been well described by Virieux (1986) and Levander
(1988) among others.

Our procedure is based on the classification of the dif-
ferent points of the grid: interior points, the fictitious line
points, and boundary points. This will allow computing each
point with its corresponding equation in the correct order.
An important aspect is the concept of a fictitious line above
the free surface. Using this line, together with the cell-based
grid, where the material properties are calculated by geo-
metric averages, to compute the values of these properties
in the grid cells rather than at nodal points, correct results
can be obtained. The results obtained with our method have
been validated with those calculated with an IBEM. Using
the appropriate boundary conditions we have been able to
deal with problems of seismological interest as the seismic
wave propagation in a free surface with topographic features.

By using the fictitious line with the free-surface conditions
and cell-based grid as developed here, the results have been
satisfactory.
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Figure 14. Synthetic seismograms recorded on the free surface of a semicircular
canyon, produced by an explosive source modeled by a Ricker source function. U,
horizontal component; W, vertical component.


